

AD2-S-X3

High-performance 3D 256 Lines LiDAR

Benewake (Beijing) Co., Ltd.

E-mail: bw@benewake.com Web: en.benewake.com

AD2-S-X3

High-performance LiDAR

AD2-S-X3 LiDAR is a high-performance LiDAR independently developed by Benewake. It has an equivalent 256 lines and a maximum ultra-high resolution of 0.1°*0.1°, which enables it to achieve high-definition target detection capability in the entire field of view (120°*25.6°) and accurately detect various targets.

AD2-S-X3 adopts a 2D scanning system and an array-based transceiver design, which supports continuous upgrades and iterations of product performance. It meets the application requirements of enhancing environment perception.

AD2-S-X3 adopts 905nm active light source perception with the ability to sense at all times. It has extremely strong environmental adaptability, unaffected by severe cold and heat. It can be widely used in intelligent transportation scenarios such as highways, railways, civil aviation, water transportation, and mining trucks.

Product Advantages

Ultra-high point cloud lines

Capable of capturing richer scene details, providing higher safety redundancy

905nm wavelength

Better performance and safer laser light source at the same class

Long-range detection

≥350m+ target detection and tracking, advanced perception

Low power consumption

Effectively reduce the cost of equipment maintenance and replacement

High resolution

Reducing the false detection/missed detection rate in the perception environment

Continuous operation

Can be operated 24-hours a day, not affected by external lighting conditions

Wide FoV

Achieving a wide range of target detection, tracking, and improved safety performance

SDK based development

SDK is open source for easy secondary development

Custom ROI

The area is dynamically adjustable, which can effectively improve the detection accuracy of target area

Application Areas

Vehicle-road Coordination

3D point-cloud provides real-time perception of traffic, including pedestrians, identifies high-precision and high-accuracy information such as target type, speed, and location.

Rail Transit

During the operation of rail transit carriers, it can The ultra-wide-angle FoV is suitable for monitoraccurately distinguish the position, speed, direction, size of obstacles and invading personcorresponding control measures in advance for information for ship targets. abnormal conditions.

Maritime Transport Safety

ing larger scenes on the water surface. The equipment has detection capabilities throughnel in the area and issue warnings or take out the day, providing accurate positioning

Civil Aviation Berth Guidance

quality.

Mining Truck Intelligent Driving

Provide more accurate and safe parking High-precision and long-range detection guidance information for aircraft to improve capabilities can output high-quality structured airport safety operations, equipment level, labor point cloud data, providing powerful data efficiency, management level, and service support for algorithms; early detection of various risks and ensuring operational safety.

Sensor Parameters

Measuring range 1 FoV

120°*25.6°(H*V) 200m@10%

Number of point-clouds Resolution

ROI 0.1°*0.1° 2.016M

Ranging accuracy 2 Frame rate

10Hz 5cm@1σ

Other Parameters

Communication protocol

UDP

Input voltage

9-32V

Time synchronization protocol Power consumption

gPTP PTP NTP ≤15W

Protection level Working temperature

-40°-85°C IP67/IP6K9K

Remarks

1) The detection range is based on outdoor 100Klux ambient light conditions, and any changes in environmental conditions may cause changes in the measurement results.

2 The ranging accuracy is based on the environmental temperature of 25°C and may change due to various factors such as ranging, reflectivity, and other environmental conditions.

*The above image shows a comparison between urban road cameras and LiDAR point cloud imaging