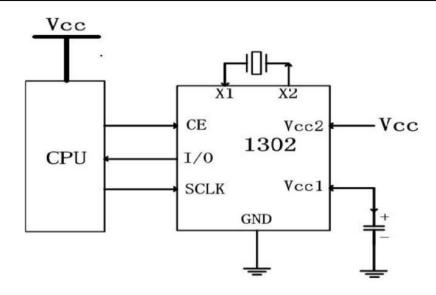


1、概述

DS1302 涓流充电计时芯片包含一个实时时钟/日历和 31 字节的静态 RAM,通过简 单的串行接口与微处理器通讯。这个实时时钟/日历提供年月日、时分秒信息,对于 少于 31 天的月份月末会自动调整,还有闰年校正。由于有一个 AM/PM 指示器,时 钟可以工作在 12 小时制或者 24 小时制。除计时功能外,还有如下特点:双管脚主 电源和备用电源,可编程涓流充电器 VCC1,还附加7字节的暂存器。广泛应用于 电话、传真、便携式仪器及电池供电的仪器仪表等产品领域。

DS1302 采用 SOP-8 封装。

2、主要特点及应用领域


- 实时时钟计算年、月、日、时、分、 秒、星期,直到2100年,并有闰年 调节功能
- 31×8位通用暂存 RAM。
- 串行输入输出使管脚数最少。
- 2.5V至 5.5V 宽电压范围操作。
- 在 2.5V 时工作电流小于 300nA
- 读写时钟或 RAM 数据时有单字节或 多字节(脉冲串模式)数据传送方 式。

- 8管脚 DIP 封装或可选的 8管脚表面 安装 SOP 封装
- 简单的3线接口。
- 与 TTL 兼容 (VCC=5V)。
- 民用温度范围: 0℃ to +80℃
- 电话
- 传真
- 便携式仪器
- 仪器仪表


3、订购信息

产品型号	封装	丝印	包装	包装数量
XBLW DS1302N	DIP-8	DS1302N	管装	1000 只/盒
XBLW DS1302DTR	S0P-8	DS1302	编带	2500 只/盘

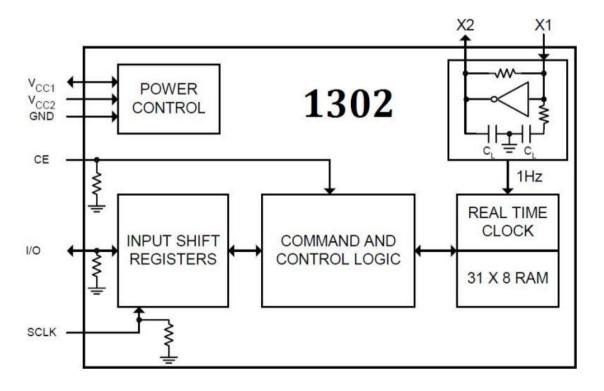
4、典型应用图

5、管脚说明

管脚 序号	管脚 名称	I/O	描述
1	V _{CC} 2	P	双供电配置中的主电源管脚、VCC1连接到备用电源、在主电源失效时保持时间和日期数据。DS1302工作于 VCC1和 VCC2中较大者,当 VCC2比 VCC1高 0.2V时, VCC2给 DS1302供电;当 VCC1比 VCC2高时, VCC1给 DS1302供电。
2	X1	I	与标准的 32.768kHz 石英晶体相连,内部振荡器被设计与指定
3	X2	О	的 6pF 装载电容的晶体一起工作。 DS1302也可以被外部的 32.768kHz 振荡器驱动,这种配置下, X1 与外部振荡信号连接, X2 悬浮。
4	GND	P	电源地
5	СЕ	I	输入。CE 信号在读写时必须保持高电平,此管脚内部有一个40KΩ(典型值)的下拉电阻连接到地。

涓流充电计时芯片

	I/O	1/0	输入/推挽输出。I/O 管脚是三线接口的双向数据管脚,此管脚
6	0 1/0 1/0	I/O	内部有一个 40ΚΩ (典型值)的下拉电阻连接到地。
		-	输入。SCLK用来同步串行接口上的数据动作,此管脚内部有
7	SCLK	1	一个 40KΩ (典型值)的下拉电阻连接到地。
			低功率工作在单电源和电池工作系统和低功率备用电池,在使
8	V _{CC} 1	P	用涓流充电的系统中,这个管脚连接到可再充能量源。UL认
			证在使用锂电池时确保避免反向充电电流。

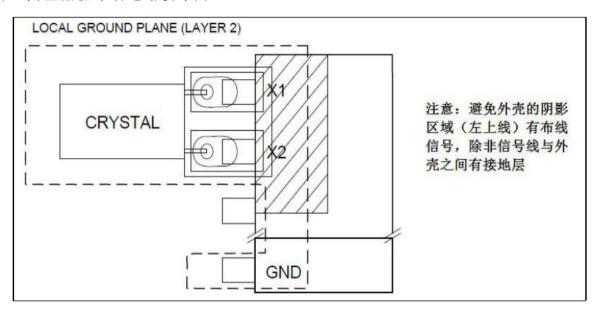

6、振荡电路

DS1302 使用一个外部 32.768kHz 晶体,振荡电路工作时不需要任何外接 的电阻或者电容。表 1 详细指明了几个外部晶体的参数, 图 1 显示了振荡电 路的功能简图。如果使用指定规格的 晶体,启动时间通常少于1秒钟。

表 1.晶振详细说明

参数	符号	最小	典型	最大	单位
标称频率	f0		32.768		kHz
谐振电阻	ESR		45		KΩ
负载电容	CL		6		pF

图 1.内部功能框图



7、时钟精确度

时钟的精确度取决于晶振的精确度,以及振荡电路容性负载与晶振校正的容性负载之间匹配的精确度。为提高走时精确度,需在晶振端外置一组 0pF-33pF 负载补偿电容,具体容值由应用布局及晶振决定。另外温度改变引起的晶振频率漂移会使误差增加,外围电路噪音与振荡电路耦合可能导致时钟运行加快。图 2显示了一个典型的隔离晶体与振荡器噪音的印刷电路板布局。

图 2.典型晶振印刷电路板布局

8、命令字

图 3 显示的是命令字,命令字启动每一次数据传输,MSB(位 7)必须是逻辑 1。如果是 0,禁止对 DS1302 写入。位 6 在逻辑 0 时规定为时钟/日历数据,逻辑 1 时为 RAM 数据。位 1 至位 5 表示了输入输出的指定寄存器,LSB(位 0)在逻辑 0 时为写操作(输出),逻辑 1 时为读操作(输入),命令字以 LSB(位 0)开始总是输入。

7	6	5	4	3	2	1	0
4	RAM	A.4	1	40	A 4	40	RD
1	CK	A4	A3	A2	A1	A0	WR

9、CE与时钟控制

所有数据传输开始驱动 CE 输入高。CE 输入实现两个功能,第一, CE 开启允许对地址/命令序列的移位寄存器进行读写的控制逻辑; 第二, CE 信号为单字节和多字节 CE 数据传输提供了 终止的方法。

一个时钟周期是一系列的上升沿伴随下降沿,要输入数据在时钟的上升沿数据必须有效,而且在下降沿要输出数据位。如果 CE 输入为低电平,则所有数据传输终止,且 I/O 口成高阻抗状态。图 4显示了数据传输,在上电时,必须为逻辑 0直到 VCC 大于 2.0V。同样,CE 变成逻辑 1 状态时,SCLK 必须为逻辑 0。

10、数据输入

输入写命令字的 8 个 SCLK 周期后,接下来的 8 个 SCLK 周期的上升沿数据字节被输入,如不慎发生,多余的 SCLK 周期将被忽略,数据输入以位 0 开始。

11、数据输出

输入读命令字的 8 个 SCLK 周期后,随后的 8 个 SCLK 周期的下降沿,一个数据字节被输出。注意第一个数据位的传送发生在命令字节被写完后的第一个下降沿,CE 保持高电平,若不慎发生,多余的 SCLK 周期会重新发送数据字节。

此操作允许连续不断的脉冲串模式读取能力,并且 I/O 管脚在 SCLK 的每个上升沿被置为三态,数据输出从位 0 开始。

12、脉冲串模式

通过寻址 31(十进制)存储单元(地址/命令位1到位5为逻辑1),脉冲串模式可以指定时钟/日历或者 RAM 寄存器。如前所述,位6指定时钟或者 RAM,位0 指定读写。时钟/日历寄存器的存储单元9至31和 RAM 寄存器的存储单元31无数据存储能力,脉冲串模式下的读写从地址0的位0开始。

在脉冲串模式下写时钟寄存器时,前8个寄存器必须按顺序写要发送的数据。然而,在脉冲串模式下写RAM时,不必写入要发送数据的所有31个字节。不管是否所有31个字节都被写入,每个写入字节都会被发送到RAM。

13、时钟/日历

读取适当的寄存器字节可以得到时间和日历信息。表 3 说明了 RTC 寄存器,写入适当的寄存器字节可以设置或初始化时间和日历,时间和日历寄存器的内容是二进制编码的十进制(BCD)格式的。

周中的天寄存器在午夜 12 点增加,周中的天相应的值可以由用户定义,但是必须是连续的。(例如,如果 1 代表周日,那么 2 代表周一,等等。)非法的时间和日期输入导致未定义操作。当读写时钟和日期寄存器时,第二(用户)缓存用来防止内部寄存器更新时出错。读时钟和日期寄存器时,在 CE 上升沿用户缓存与内部寄存器同步。

每当秒寄存器被写入,递减计数电路被复位。写传输发生在 CE 的下降沿,为了避免翻转问题。一旦递减计数电路复位,剩下的时间和日期寄存器必须在一秒内被写入。

DS1302 可以工作在 12 小时制和 24 小时制两种模式下,小时寄存器的位 7 定义为小时模式选择位,为高时是 12 小时制,12 小时制模式下,位 5 是上午/下午位且高电平是下午;24 小时制模式下,位 5 是第二位小时位 (20 点 - 23 点)。一旦 12/24 改变,小时数据必须被重新初始化。

14、时钟暂停标志

秒寄存器的位 7 被定义为时钟暂停标志,当此为置 1 时,时钟振荡器暂停, DS1302 进入漏电流小于 100nA 的低功耗备用模式。当此为置 0 时,时钟开始,初始加电状态未定义。

15、写保护位

控制寄存器的位 7 是写保护位,前 7 位(位 0 至位 6)被强制为 0 且读取时总是读 0。在任何对时钟或 RAM 的写操作以前,位 7 必须为 0。当为高时,写保护位禁止任何寄存器的写操作,初始加电状态未定义。因此,在试图写器件之前应该清除 WP 位。

16、涓流充电寄存器

此寄存器控制 DS1302 的涓流充电特性,图 5 的简化结构图显示了涓流充电器的基本元件。涓流充电选择(TCS)位(位 4 到位 7)控制涓流充电器的选择。为了防止意外使能,只有 1010 的模式才能使涓流充电器使能,所有其他模式都会禁止涓流充电器。 DS1302 加电时涓流充电器是禁止的,二极管选择(DS)位(位 2 和位 3) 选择 VCC2 和 VCC1 之间连了一个还是两个二极管。如果 DS 是 01,一个二极管,10 就是 2 个二极管。如果 DS 是 00 或者 11,不管 TCS,涓流充电器被禁止; RS 位(位 0 和位 1)选择连在 VCC2 和 VCC1 之间的电阻。表 2 显示了 RS 和 DS 选择电阻和二极管。

表 2. 涓流充电电阻和二极管选择

TCS BIT7	TCS BIT6	TCS BIT5	TCS BIT4	TCS BIT3	TCS BIT2	TCS BIT1	TCS BIT0	FUNCTION
×	×	×	×	×	×	0	0	Ddisabled
×	×	×	×	0	0	×	×	Ddisabled
×	×	×	×	1	1	×	×	Ddisabled
1	0	1	0	0	1	0	1	1Diode, 2KΩ
1	0	1	0	0	1	1	0	1Diode, 4KΩ
1	0	1	0	0	1	1	1	1Diode, 8KΩ
1	0	1	0	1	0	0	1	2Diodes, 2KΩ
1	0	1	0	1	0	1	0	2Diodes, 4KΩ
1	0	1	0	1	0	1	1	2Diodes, 8KΩ
0	1	0	1	1	1	0	0	Initial power-on state

电阻和二极管的选择是由用户根据电池或超级电容充电所需的最大电流决定 的, 最大充电电流可以向下面的例子所示那样计算出来。

假设5V系统供电电源加在VCC2,一个超级电容连在VCC1。同时假设涓流充 电器被使能且 VCC2 与 VCC1 有一个二极管和电阻 R1, 最大电流 IMAX 如下式计 算: IMAX= (5.0V-二极管压降) / R1 ≈ (5.0V-0.7V) / 2kΩ≈ 2.2mA

超级电容充电时, VCC2 与 VCC1 之间压降增加, 因此充电电流增加。

17、时钟/日历脉冲串模式

时钟/日历命令字节指定脉冲串模式操作,此模式下,前八个时钟/日历寄存器必 须从地址 0 的位 0 开始连续读写(见表 3)

如果当指定为写时钟/日历脉冲串模式时,写保护位置高,八个时钟/日历寄存器 (包括控制寄存器)都不会发生数据传输,脉冲串模式下涓流充电器是不可读写的。 在时钟脉冲串读取的开始、当前时间被传送至另外的存储器集合;当时钟继续运行时, 会从这些第二寄存器读回时间信息。这就消除了万一读取时主寄存器更新重新读取 寄存器的必要。

18 RAM

静态 RAM 在 RAM 地址空间内是以 31 x 8 字节连续编址的。

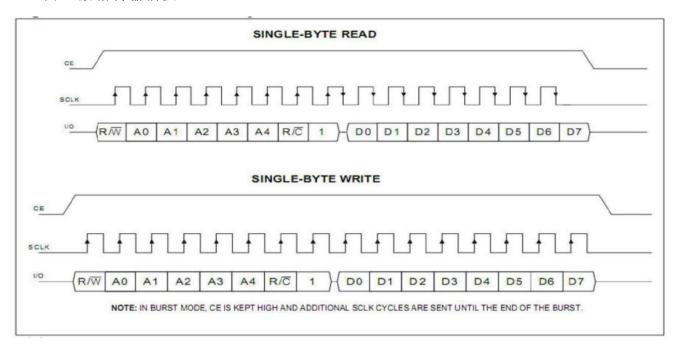
19、RAM 脉冲串模式

RAM 命令字节定义了脉冲串模式操作,此模式下,31 RAM 寄存器可以从地址 0 的位 0 开始连续读写(见表 3)。

20、寄存器摘要 表 3 显示了寄存器数据格式摘要。

表 3.RTC

READ	WRITE	BIT7	BIT6	BIT5	BIT4	BIT3	RANGE			
81h	80h	СН	10 Seconds				Seconds			
83h	82h			10Minute	S		Min	utes		00-59
85h	84h	12/24		0 /PM	Hour	Hour			1-12/0-23	
87h	86h	0		10Date	Date			1-31		
89h	88h	0	0	0	10Mon th		Мо	nth		1-12
8Bh	8Ah	0	0	0	0	0		Date		1-7
8Dh	8Ch		10	Year			Ye	ear		00-99
8Fh	8Eh	WP	0	0	0	0	0 0 0 0			-
91h	90h	TCS	TCS	TCS	TCS	DS	DS	RS	RS	-

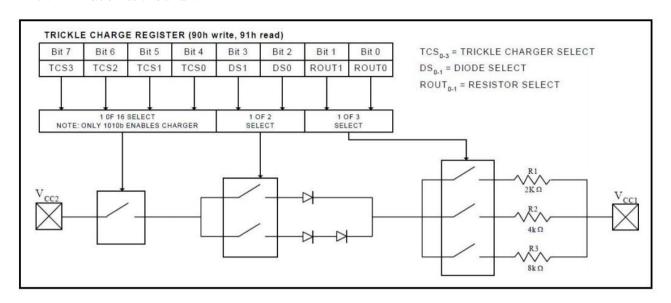


涓流充电计时芯片

21、晶振选择

一个 32.768kHz 晶振可以通过管脚 2 和 3 (X1, X2) 直接连接到 DS1302。为提高走时精确度,需在晶振端外置一组 10pF-33pF 负载补偿电容,具体容值由应用布局及晶振决定。

图 4.数据传输摘要



22、时钟脉冲串23、RAM 脉冲串BFhBEh BFh BEh

24 RAM

C1h	C0h	00-FFh
C3h	C2h	00-FFh
C5h	C4h	00-FFh
	•	
EDI	ECI.	00 EE
FDh	FCh	00-FFh

图 5.可编程涓流充电器

25、极限参数

参数名称	标注识	值
任何管脚与地之间的电压范围		-0.5~7.0V
工作温度范围, 民用级	Tj_Min/Max	0~80℃
存储温度范围	Ta_Min/Max	-40~140 °C
铅温度 (焊接, 10s)	T_lead	260℃

超出绝对最大额定值表中列出的应力会使器件产生永久损坏,这些只是额定值,不包括处于或者超出说明书的工作区间所指明的状态的功能性操作,长期处于绝对最大额定值会影响器件的可靠性。

26、推荐直流工作条件(Ta=0℃~+80℃)(注 1)

参数	,	·····································	状态		单位		
少	1	<u>ग</u> ५	1人心 	最小	典型	最大	1 平位
供电电压 VCC1, VCC2	VCC1 VCC2		(注 2, 10)	2.0	3.3	5.5	V
逻辑 1 输入	VIH		(注 2)	2.0		VCC+0.3	V
逻辑 0 输入	WII	VCC=2.0V	(注2)	-0.3		+0.3	V
	VIL	VCC=5V		-0.3		+0.8	·

27、直流电气特性条件: (Ta=0℃~+80℃) (注 1)

会 ₩	hih	号	测计及供	规	范 值		单位
参数	1寸	万	测试条件	最小	典型	最大	1 単位
输入漏电流	ILI		(注 5, 13)		85	500	μA
I/O 漏电流	IL0		(注 5, 13)		85	500	μΑ
逻辑 1 输出 (IOH=-0.4mA)	VOH	VCC=2V	(注 2)	1.6			V
逻辑 1 输出 (IOH=-1.0mA)	VOII	VCC=5V	(11. 2)	2.4			V
逻辑 0 输出 (IOH=+1.5mA)	VOL	VCC=2V	(注 2)			0.4	V
逻辑 0 输出 (IOH=+4.0mA)		VCC=5V	(11. 2)			0.4	V
动态供电电流	ICC1A	VCC=2V	CH=0			0.4	m A
(振荡器使能)	ICCIA	VCC=5V	(注 4, 11)			1.2	IIIA
计时电流	ICC1T	VCC=2V	CH=0		0.2	0.3	
(振荡器使能)	ICC1T	VCC=5V	(注 3, 11, 13)		0.45	1	μΑ
+6 1. 1 >>		VCC=2V			1	100	nA
静态电流 (振荡器禁止)	ICC1S	VCC=5V	CH=1 (注 9, 11, 13)		1	100	
		IND			5	200	
动态供电电流	ICC2A	VCC=2V	CH=0			0.425	A
(振荡器使能)	ICC2A	VCC=5V	(注 4, 12)			1.28	m A
计时电流	LOCAT	VCC=2V	CH=0			25.3	
(振荡器使能)	ICC2T	VCC=5V	(注 3, 12)			81	μA
静态电流	10020	VCC=2V	CH=1			25	
(振荡器禁止)	ICC2S	VCC=5V	(注 9, 12)			80	μΑ
	R1				2		
涓流充电电阻	R2				4		КΩ
	R3				8		
涓流充电二极管 压降	VTG				0.7		V

交流电气特性 (Ta=0℃~+80℃) (注 1)

会 粉	, A	ケ 旦	夕 件	规	范 值		单位
参数	1	夺号	条件	最小	典型	最大	1 単位
D. A. A. CL. V. C. A.	TDC	VCC=2V	() ()	200			
Data to CLK Setup	TDC	VCC=5V	VCC=5V (注 6)				ns
CI V 4- D-4- H-14	TCDII	VCC=2V	(注 6)	280			
CLK to Data Hold	TCDH	VCC=5V	(7生 0)	70			ns
CLK to Data Delday	TCDD	VCC=2V	(注 6, 7, 8)			800	n a
CLK to Data Delday	ICDD	VCC=5V	(在 6, 7, 8)			200	ns
CLK Low Time	TCL	VCC=2V	(注 6)	1000			n a
CLK Low Time	ICL	VCC=5V		250			ns
CIV High Time	ТСН	VCC=2V	(注 6)	1000			ns
CLK High Time	ТСП	VCC=5V	(在 0)	250			
CLV Fraguagnay	CLK Frequeency TCLK	VCC=2V	(注 6)			0.5	MHz
CLK Frequeency	ICLK	VCC=5V	(在 0)	DC		2.0	MITZ
CLK Rsie and Fall	TR	VCC=2V				2000	ng
CLK KSIE and Fair	TF	VCC=5V				500	ns
CE to CLK Setup	TCC	VCC=2V	(注 6)	4			na
CE to CER Setup	100	VCC=5V	(在 0)	1			ns
CLK to CE Hold	ТССН	VCC=2V	(注 6)	240			ns
CLK to CL Hold	rccn	VCC=5V	(在 0)	60			115
CE Inactive Time	TCWH	VCC=2V	(注 6)	4			n a
CE mactive time	тсмп	VCC=5V	(在 0)	1			ns
CE to I/O High	TCDZ	VCC=2V	(注 6)			280	ne
Impedance	TCDZ	VCC=5V	(在 0)			70	ns
SCLK to I/O High	TCCZ	VCC=2V	(注 6)			280	na
Impedance	ICCZ	VCC=5V	(1工 0)			70	ns

注 1:-20℃ 的限制是设计所保证,并未进行生产测试.

注 2: 所有电压以地为参考点.

注 3: ICC1T 和 ICC2T 由 I/O 开, CE 和 SCLK 为 0 指定.

注 4: ICC1A 和 ICC2A 由 I/O 开, CE 高指定, SCLK = 2MHz 当 VCC = 5V; SCLK = 500kHz, VCC = 2.0V.

注 5: CE, SCLK, I/O 都有 40kΩ下拉电阻接到地.

注 6: VIH = 2.0V 或 VIL = 0.8V 时测定, 10ns 最大上升下降时间.

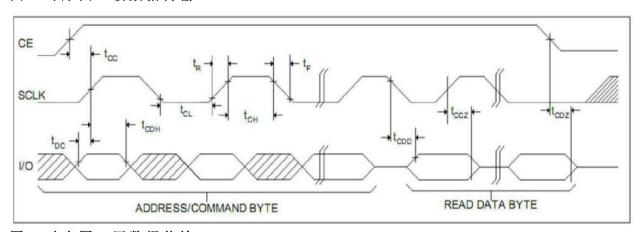
注 7: VOH = 2.4V 或 VOL = 0.4V 时测定.

注 8: 负载电容 = 50pF.

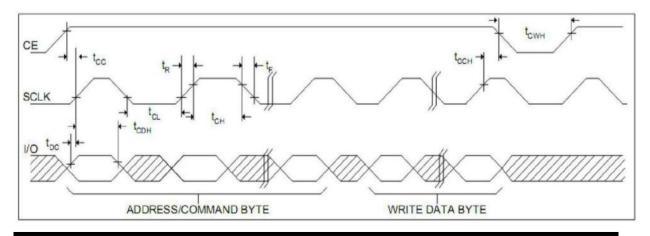
注 9: ICC1S 和 ICC2S 由 CE, I/O, SCLK 开指定.

注 10: VCC = VCC2, 当 VCC2 > VCC1 + 0.2V; VCC = VCC1, 当 VCC1 > VCC2.

注 11: VCC2 = 0V.


注 12: VCC1 = 0V.

注 13: 典型值为+25℃时.


29、电容

参数	符号	规 范 值			单位
少	17 5	最小	典型	最大	平位
输入电容	CI		10		pF
I/O 电容	CI/O		15		pF

图 6.时序图:读数据传输

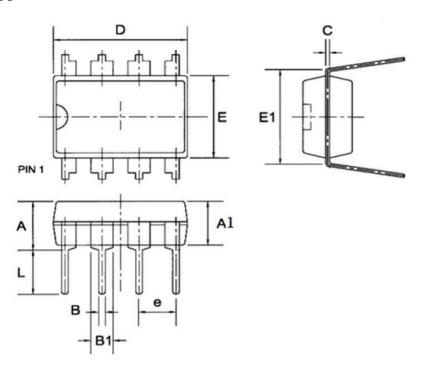
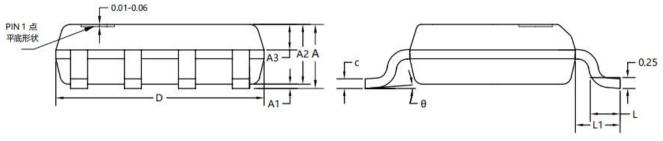
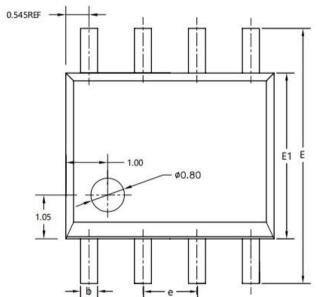


图 7.时序图: 写数据传输


30、封装尺寸


DIP8

Symbol	Dimensions in Millimeters			
	Min	Nom	Max	
A		19-1	4.31	
A1	3.15	3.30	3.65	
В	0.38	0.46	0.51	
B1	1.27	1.55	1.77	
С	0.20	0.25	0.30	
D	8.95	9.40	9.45	
Е	6.15	6.20	6.65	
E1		7.60		
e		2.54		
L	3.00	3.30	3.60	

SOP8

SYMBOL _	MILLIMETER			
	MIN	NOM	MAX	
А	1.55	1.65	1.75	
(A1)	0.10	0.15	0.20	
A2	1.35	1.45	1.55	
A3	0.60	0.70	0.80	
b	0.30	0.40	0.50	
c	0.17	0.20	0.25	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e	1.27BSC			
L	0.50	0.60	0.70	
L1	1.05REF			
θ	0°	4°	8°	

声明:

- ◆ 深圳芯伯乐电子有限公司保留产品说明书的更改权, 恕不另行通知! 客户在下单前, 需确认获取的资料是否为最新版本, 并验证相关信息的完整性。
- ◆ 任何半导体产品在特定的条件下都有失效或发生故障的可能,买方有责任在使用深圳芯伯乐电子有限公司产品进行系统设计和整机制造时遵守安全标准,并采取相应的安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品性能提升永无止境,深圳芯伯乐电子有限公司将竭诚为客户提供性能更佳、 质量更优的集成电路产品。