
WIRELESS
SUPER STARTER KIT

WITH ESP8266

Table of Contents

1. Introduction..9

2. Install and configure Arduino IDE...........................11
2.1 Download and install Arduino IDE......................................11
2.2.1 For Linux users..11
2.2.2 For Windows users..15
2.2 Add ESP8266 based boards into the Arduino IDE...............19

3. Add Libraries..24
3.1 What are Libraries..24
3.2 Installing a library..25

4. Lesson 1: Blink an LED...27
4.1 Overview..27
4.2 Components required...27
4.3 Component Introduction..27
4.4 Connection...31
4.5 Code...32

5. Lesson 2: Dim an LED..39
5.1 Overview..39
5.2 Components required...39
5.3 Theory..39
5.4 Connection...40
5.5 Code...41

6. Lesson 3: RGB LED..43
6.1 Overview..43
6.2 Components required...43
6.3 Components introduction...43
6.4 Theory..44
6.5 Connection...45
6.6 Code...46

7. Lesson 4: Motor Control...50
7.1 Overview..50
7.2 Components required...50

2
www.plusivo.com Plusivo – ESP8266 Guide

7.3 Components introduction...50
7.4 Connections...53
7.5 Code...54

8. Lesson 5: Ultrasonic HC-SR04+..............................57
8.1 Overview..57
8.2 Components required...57
8.3 Components introduction...57
8.4 Connections...59
8.5 Code...59

9. Lesson 6: RGB LED and Ultrasonic..........................62
9.1 Overview..62
9.2 Components required...62
9.3 Connections...62
9.4 Code...63

10. Lesson 7: Digital Inputs.......................................65
10.1 Overview..65
10.2 Components required...65
10.3 Components introduction...65
10.4 Connections...66
10.5 Code...66

11. Lesson 8: Control an LED using push buttons........68
11.1 Overview..68
11.2 Components required...68
11.3 Connections...68
11.4 Code...69

12. Lesson 9: Buzzer...72
12.1 Overview..72
12.2 Components required...72
12.3 Components introduction...72
12.4 Connections...74
12.5 Code...75

13. Lesson 10: Buzzer and Digital Inputs....................77

3
www.plusivo.com Plusivo – ESP8266 Guide

13.1 Overview..77
13.2 Components required...77
13.3 Connections...77
13.4 Code...79

14. Lesson 11: Buzzer and Ultrasonic.........................81
14.1 Overview..81
14.2 Components required...81
14.3 Connections...81
14.4 Code...82

15. Lesson 12: Play songs with a buzzer.....................85
15.1 Overview..85
15.2 Components required...85
15.3 Connections...85
15.4 Code...86

16. Theory lesson: Object-Orienteed Programming (OOP)
..92

17. Lesson 13: DHT11..106
17.1 Overview..106
17.2 Components required...106
17.3 Component Introduction..106
17.4 Connections...107
17.5 Code...108

18. Lesson 14: Potentiometer and Servo Motor.........111
18.1 Overview..111
18.2 Components required...111
18.3 Components introduction...111
18.4 Connections...112
18.5 Code...113

19. Lesson 15: Wireless Connectivity........................116
19.1 Overview..116
19.2 Components required...116
19.3 HTTP...116

4
www.plusivo.com Plusivo – ESP8266 Guide

19.4 Code...117

20. Theory lesson: Web pages..................................123
20.1 HTML..123
20.2 JavaScript Object Notation...133
20.3 jQuery..135
20.4 Bootstrap..140
20.5 Font awesome..146

21. Lesson 16: Control an LED from web...................151
21.1 Overview..151
21.2 Components required...151
21.3 Connections...151
21.4 Code...152

22. Lesson 17: Dim an LED from web........................156
22.1 Overview..156
22.2 Components required...156
22.3 Connections...156
22.4 Code...157

23. Lesson 18: Dim an RGB LED from web.................161
23.1 Overview..161
23.2 Components required...161
23.3 Connections...161
23.4 Code...162

24. Lesson 19: Control a motor from web..................167
24.1 Overview..167
24.2 Components required...167
24.3 Connections...167
24.4 Code...168

25. Lesson 20: Display the distance in web...............175
25.1 Overview..175
25.2 Components required...175
25.3 Connections...175
25.4 Code...176

5
www.plusivo.com Plusivo – ESP8266 Guide

26. Lesson 21: Potentiometer, servo, DHT11 and web
server...182
26.1 Overview..182
26.2 Components required...182
26.3 Connections...182
26.4 Code...183

27. Lesson 22: Buzzer from web...............................189
27.1 Overview..189
27.2 Components required...189
27.3 Connections...189
27.4 Code...190

28. Lesson 23: Set the frequency of a buzzer from web
..195
28.1 Overview..195
28.2 Components required...195
28.3 Connections...195
28.4 Code...196

29. Lesson 24: Piano...203
29.1 Overview..203
29.2 Components required...203
29.3 Connections...203
29.4 Code...204

30. Lesson 25: Piano with 7 octaves.........................216
30.1 Overview..216
30.2 Components required...216
30.3 Connections...216
30.4 Code...217

31. Lesson 26: Shift Register...................................222
31.1 Overview..222
31.2 Components required...222
31.3 Component Introduction..222
31.4 Connections...224
31.5 Code...225

6
www.plusivo.com Plusivo – ESP8266 Guide

32. Lesson 27: Multiple Shift Registers.....................230
32.1 Overview..230
32.2 Components required...230
32.3 Connections...230
32.4 Code...232

33. Lesson 28: 4 Digit 7 Segment Display.................240
33.1 Overview..240
33.2 Components required...240
33.3 Component Introduction..240
33.4 Connections...241
33.5 Code...242

34. Lesson 29: Multiplexing.....................................248
34.1 Overview..248
34.2 Components required...248
34.3 Connections...248
34.4 Code...250

35. Lesson 30: Show Distance on 4 Digit Display. Timer
..255
35.1 Overview..255
35.2 Components required...255
35.3 Connections...255
35.4 Code...257

36. Lesson 31: Exponential Moving Average..............263
36.1 Overview..263
36.2 Components required...263
36.3 Connections...263
36.4 Code...265

37. Lesson 32: OTA Upload.......................................267
37.1 Overview..267
37.2 Components required...267
37.3 Code...267

38. Lesson 33: Soft Access Point..............................274

7
www.plusivo.com Plusivo – ESP8266 Guide

38.1 Overview..274
38.2 Components required...274
38.3 Code...274

39. Lesson 34: SPIFFS...278
39.1 Configure Arduino IDE..278
39.2 Check the flash memory..282
39.3 Upload data in flash memory...283
39.4 Code...285

8
www.plusivo.com Plusivo – ESP8266 Guide

 1. Introduction

1. Introduction
In the last period technology has evolved exponentially and devices became

smaller and smaller, with less power consumption and, in the same time, with more
powerful chips and low prices. The development board included in this kit is built
around the powerful microcontroller ESP8266. This development board is WiFi Ready,
so it is a solid option for most IoT (Internet of Things) projects.

ESP8266 features:

• 32-bit RISC CPU: Tensilica L106 running at 80 Mhz, but can go up to 160
Mhz;

• WiFi 802.11 b/g/n;

• Wi-Fi Direct, soft-AP;

• Serial Peripheral Interface (SPI);

• Analog to Digital Converter (ADC);

• Pulse Width Modulation (PWM);

• +19.5 dBm output power in 802.11b mode;

• Deep sleep: consumes less than 10 mA;

Development board features:

• Supply voltage:

◦ 3.3 V on a pin marked as 3.3 V;

◦ 5 V via micro USB;

◦ 5 V – 9 V via VIN pin (regulated by AMS1117);

• 9 digital pins (D0 – D8);

• 1 analog pin;

• USB driver CH340;

• Breadboard friendly;

• 3 x 3.3 V outputs;

The development board included in this kit is equipped with the powerful
module ESP8266. It features WiFi 802.11 b/g/n, 9 digital pins, multiple 3.3 V output
pins, special functions such as Pulse Width Modulation (PWM), Analog-to-Digital
Converter (ADC), Inter-Integrated Circuit (I2C) or Serial Peripheral Interface (SPI).

9
www.plusivo.com Plusivo – ESP8266 Guide

 1. Introduction

CH340 is the driver used to communicate with the computer.

Due to its reduced size, the board is breadboard friendly, which means that
building a project from scratch is easy for a beginner as there is no need to solder the
parts together.

There are 9 digital pins available (D0 – D8), but some of them (D0, D3, D4,
D7, D8) are linked to different components mounted on the PCB and it is
recommended not to use them.

10
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

2. Install and configure Arduino IDE

2.1 Download and install Arduino IDE
The Arduino Integrated Development Environment (IDE) is the software side

of the Arduino platform. It is used to program development boards, such as Arduino
or ESP8266 based ones.

It is available for free on their official website and it provides support for
most of the Operating Systems, such as Windows, Mac OS X and Linux. The
environment is open-source and it is based on Processing and other open-source
software.

It is recommended to download the version 1.8.5 in order to be compatible
with this guide. Other versions may have a different layout than the one used to
create this tutorial.

2.2.1 For Linux users

Download
You can download Arduino IDE from

https://www.arduino.cc/en/Main/Softw a re .

Probably you have a 64 bits Linux based operating system, but, if you are
running a 32 bits operating system, select Linux 32 bits (red rectangle), or Linux 64
bits (blue rectangle), if you are running a 64 bits operating system.

11
www.plusivo.com Plusivo – ESP8266 Guide

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Softwa
https://www.arduino.cc/en/Main/Softw

 2. Install and configure Arduino IDE

Also, if the version was updated, check Previous Releases to make sure you
have the same version, 1.8.5, for best compatibility with this guide.

Install
a) Find the folder which contains the .tar.xz file downloaded from

www. a rduino.com ;

b) Right-click on the archive and extract the files in a folder of your choice;

12
www.plusivo.com Plusivo – ESP8266 Guide

http://www.arduino.com/
http://www.arduino.com/
http://www.arduino.com/

 2. Install and configure Arduino IDE

c) Right-click on the folder containing the files extracted and go to Properties;

13
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

d) Copy the location of the folder

e) Now, open a terminal and cd to that location;

f) List all the files in that folder using ls;

g) And cd to the folder containing the files extracted;

h) And now just type ./install.sh and press Enter;

14
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

i) You can close the terminal;

j) Congratulations! You have successfully installed Arduino IDE on your linux-
based computer.

2.2.2 For Windows users

Download
You can download Arduino IDE from

https://www.arduino.cc/en/Main/Software.

Now, click on Windows (blue rectangle).

15
www.plusivo.com Plusivo – ESP8266 Guide

https://www.arduino.cc/en/Main/Software

 2. Install and configure Arduino IDE

Also, if the version was updated, check Previous Releases to make sure you
have the same version, 1.8.5, for best compatibility with this guide.

Install
a) Find the file you have just downloaded from www.arduino.com.

b) Double click on it.

c) Read the “License Agreement”, then click on “I agree” if you accept the
agreement.

16
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

d) Select all components to install, then click on “Next”.

e) Select the location of the installation. Do not forget it.

17
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

f) Wait until the installation is finished.

g) When the setup is finished, click on the Close button.

18
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

h) Congratulations! You havesuccessfully installed Arduino IDE on your
computer.

2.2 Add ESP8266 based boards into the Arduino IDE
Uploading code to the development board is not supported by default. In

order to be able to program the board, you have to follow these steps:

1) Open Arduino IDE.

2) Click on File tab and select Preferences, or you can use the shortcut CTRL
+ COMMA.

19
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

3) In the Preferences window, search for “Additional Boards Manager URLs”
and copy – paste the following link:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

20
www.plusivo.com Plusivo – ESP8266 Guide

http://arduino.esp8266.com/stable/package_esp8266com_index.json

 2. Install and configure Arduino IDE

After you entered the code in the text area, click on the OK button and the
window should close.

4) In the Arduino IDE, click on the TOOLS tab, hover the cursor over the
selected board, then click on Boards Manager…

21
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

5) In the opened window, search for the ESP8266 boards, and install the latest
version available. At the moment of writing this guide, the latest version was
2.4.1.

22
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

6) Open the Tools tab, hover over Board and select NODEMCU 1.0 (ESP –
12E module).

7) Configure the settings as shown below. This is not the only working
configuration.

 Here are the settings:

• Board: NodeMCU 1.0 (ESP-12E Module)

• Flash Size: 4M (1M SPIFFS)

• Debug port: Disabled

• Debug level: None

• IwIP: v2 Lower Memory

• CPU Frequency: 80 Mhz

• Upload Speed: 921600

• Erase flash: Only Sketch

23
www.plusivo.com Plusivo – ESP8266 Guide

 2. Install and configure Arduino IDE

8) Congratulations. Now, the Arduino IDE is configured and ready to have
code uploaded to the development board.

3. Add Libraries
Once you are comfortable with the Arduino IDE software, you may want to

extend the abilities of your development board with additional libraries. Throughout
this guide we will need some libraries for connecting different sensors and, at the
right moment, you will learn how to create your own library and add it as a .zip
archive.

3.1 What are Libraries
Libraries are a collection of code that makes it easy for you to connect to a

sensor, display, module, etc, through predefined functions and commands for a
specific programming language. There are hundreds of additional libraries on the
Internet written by different people.

24
www.plusivo.com Plusivo – ESP8266 Guide

 3. Add Libraries

3.2 Installing a library
To install a new library into your Arduino IDE you can use the Library

Manager. Open Arduino IDE and click on the Sketch menu and then go to Include
Library > Manage Libraries.

In the opened window, you can find all the libraries available to install. These
are libraries written by Arduino, or partner companies, but there are libraries
written even by contributors and uploaded so that anyone can use them. Search for
any library and hit Install.

25
www.plusivo.com Plusivo – ESP8266 Guide

 3. Add Libraries

After installing the library, to include it in your code go to Sketch > Include
Library and select the libray you have just installed.

And in your code you should see something like this:

26
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

4. Lesson 1: Blink an LED

4.1 Overview
In this lesson you will learn how to use a breadbord, how to place

components on it and how to control an LED.

4.2 Components required
• Development board;

• 1 x LED;

• 1 x 150 Ω resistor;

• Breadboard 830p;

• 2 x male-to-male jumper wires;

• Micro USB – Type A USB Cable;

4.3 Component Introduction
➢ Breadboard 830p

A breadboard enables you to prototype circuits quickly, without having to
solder the components together. There are multiple types of breadboards that differ in
size and configuration, but the breadboard included in this kit has 830 points.

A breadboard consists of a block of plastic with multiple holes. Inside the
block there are strips of metal that provide electrical connection between holes.

While a breadboard is very good for prototypes as you can simply insert a
component into it in order to have a connection. Sometimes these connections are
not very stable and can make components work improperly.

A picture with a similar breadboard included in the kit can be seen below.

27
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

On the edges (area A and D) there are the rails. They are used to provide
power and have suggestive colours: blue for ground and red for VCC. Please note that
the blue and red lines are not connected between them.

In the middle (area B and C), the space is used to mount components such as
LED, sensors, resistors etc. A deep channel running down the middle indicates that
there is a break in connections there, meaning that you can push a chip in with the
legs at either side of the channel without connecting them together.

➢ Light Emitting Diode
An Light Emitting Diode (LED) is a component used to provide visual

feedback, as they use very little electricity (about 15-30 mA for a standard 5 mm LED)
and they can last forever (unless you burn them). One of the most common type of
LED is the 5mm red LED. The size of 5 mm refers to the diameter of the LED, and red
represents the colour it emits when it is powered.

An LED is always used with a resistor in series in order to limit the amount
of current flowing through it, as otherwise it will burn out and you can't repair it. The

formula to calculate the resistance needed is the following: R=
Vcc−V LED

I LED

where:

- Vcc is the supply voltage (this development board has only 3.3V outputs);

- VLED is the LED forward voltage (2 V for red, 2.1 V for green, 3.2 V for blue)

28
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

- ILED is the LED forward curent (15 mA for red, 20 mA for green, 25 mA for
blue)

Example: Let's say that you want to power a green led from 3.3 V. The led
has the forward voltage of about 2.1 V and the forward current of about 10 mA (max
current on each pin of the board is 12mA). The resistor required has the following
value:

R=
3.3V−2.1V

10⋅10−3 A
=

1.2V

10⋅10−3 A
=120Ω

So, the required resistor needs to have a resistance of 120 Ω. Sometimes, you
won't find the desired resistance and it is recommended to pick a resistor with a
higher resistance. In this case, you should pick a 150 Ω.

IMPORTANT! When you power an LED, the polarity matters. It means you
have to correctly identify the anode (positive lead of the LED) and the cathode
(negative lead of the LED). Depending on the LED used, there are multiple ways to
determine how to power it:

• If the leads don't have the same length, it means that the longer one is the
anode (positive terminal) and the shorter one is cathode (negative terminal)
as shown below.

• If the leads have the same length, you have to check the body of the LED as
there is a flat edge and that is the place where the negative lead enters into
the body, as shown below.

29
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

➢ Resistor
A resistor is a passive two-terminal electrical component that is used to

reduce the current flow, adjust signal levels, divide voltages, etc. The higher the value
of the resistor, the less current will flow through it. Unlike the LEDs, resistors don't
have polarity so you can connect them either way around.

The unit of resistance is called OHM, which is usually shortened to Ω (the
Greek letter Omega). Sometimes, you can see another other latin letter next to the Ω,
such as kΩ (1kΩ = 1,000Ω) or MΩ (1MΩ = 1,000kΩ = 1,000,000Ω).

In schematics, there are two common ways to represent a resistor: US style
and EU style. Below you have an example.

Most of the resistors have the same body, so it is useful to know how to
determine the value of a resistor. There are 2 ways:

• You can simply use a multimeter to measure the resistance, then to
approximate to the closest common value.

• You can decode the pattern printed on them.

30
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

4.4 Connection
In order to blink an LED, you have to connect the negative terminal (please

check above to see how to determine it) to a GND pin of the development board, and
the positive terminal to a digital pin. In this example, we are going to use D6, as
shown below.

31
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

Next, you can see a visual representation of how to connect the LED to the
breadboard and development board.

The board runs at 3.3 V, which is enough to power the LED. In order to power
the board, you have to plug the USB cable to a computer or to a travel adapter. It has
an onboard 3.3 V regulator, which lowers the voltage from 5 V to 3.3 V. The resistor is
picked accordingly to the equation presented before (check the Resistor section). The
required resistance is about 120 Ω, but we are going to pick a 150 Ω resistor as the
120 Ω is not a common value.

4.5 Code
Every Arduino or ESP8266 code is based on two main functions:

• void setup()

◦ It runs only once, when the board starts. Usually, it is used to start the

32
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

serial communication or different components.

• void loop()

◦ This function will continuously run. It is used to check the state of the
sensors attached to the board, or to control components.

The code required to blink the LED can be found in the folder called "Lesson
1: Blink an LED".

First step is to declare two variables, one to store the pin used by the LED,
and another to store the time in milliseconds.

Code 4.5.1 Declaring the variables used

//the int variable "LED" stores the pin used by the LED
const int LED = D6;

//the int variable "delayTime" stores the time (in milliseconds) between the
blinks
//1000 milliseconds = 1 second
const int delayTime = 1000;

The setup() function runs one time when the development board is powered
On. In this function we have to initialise the pin as OUTPUT using the function
pinMode(pin, mode), where pin is the pin used to connect something and mode
can be OUTPUT, INPUT or INPUT_PULLUP.

When a pin is configured as INPUT, the pin is in a high-impedance state,
meaning that it takes very little current to move the input pin from one state to
another; this mode is used primarily when connecting sensors and we want to read
from them.

On the development board there are pullup resistors that can be accessed by
setting the pinMode as INPUT_PULLUP. This inverts the behavior of the INPUT
mode, where HIGH means the sensor is off, and LOW means the sensor is on.

Pins configured as OUTPUT are in a low-impedance state. This means that
the impedance of the pin is lowered so it can provide a substantial amount of current
to other circuits.

Code 4.5.2 The setup() function

void setup()
{
 //the following instruction initialises the pin stored in the
 //variable LED as OUTPUT
 //this instruction lowers the impedance of the pin so it can provide
 //a higher current to other components.
 pinMode(LED, OUTPUT);
}

33
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

Further, the loop function is used to actually turn the LED on and off.
Changing the state of the led is done with the instruction digitalWrite(pin, state).
State can be either HIGH (on) or LOW (off). delay(time) stops the code for a certain
period of time, where time is a value in milliseconds (1000 ms = 1 s).

Code 4.5.3 The loop() function

void loop()
{
 //in order to turn on/off the LED, you have to use the
 //instruction digitalWrite(pin, state);
 //Parameters:
 //pin: it can be one of the 9 available on the board (from D0-D8)
 //state: it can be either HIGH, either LOW.

 //the next two instructions are used to turn off the LED and wait for 1
second
 digitalWrite(LED, LOW);
 delay(delayTime);

 //the next two instructions are used to turn on the LED and wait for 1
second
 digitalWrite(LED, HIGH);
 delay(delayTime);
}

Next step is to gently connect the development board to the computer via the
included micro USB cable. There is only one way to plug it in, so do not use force to
insert the cable.

In the Arduino IDE, click on the Tools tab, hover the cursor over the Port
and select the port used by the development board. Depending on the OS used, the
port can be different.

34
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

Now click on the Upload button (green rectangle) or use the shortcut
CTRL + U. After you click on the button, the code is verified, compiled and then
uploaded to the board.

Sometimes, you just want to verify the code without uploading to the board.
In that case, you can use the Verify button (red rectangle). This action does not
require the board to be connected to the computer.

35
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

Below, you can see the steps the code goes through. It goes from “Compiling
Sketch” to “Uploading”, and, finally, to “Done uploading”. In the first step, the
code is verified, and if there are any syntax errors, you can see them in the bottom of
the window. Then, the code is uploaded to the board. During this step, you can get
errors that are more likely to be hardware mistakes rather than software ones, such
as the port not being correctly selected, the board is broken or there is not enough
storage space.

36
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

37
www.plusivo.com Plusivo – ESP8266 Guide

 4. Lesson 1: Blink an LED

After you get the confirmation message, you can check if the LED is blinking.
During the uploading process, you can see the other led blinking very fast.

Congratulations! You have just completed your very first tutorial. You have
just learned how to upload code to a development board and how the code is
structured.

38
www.plusivo.com Plusivo – ESP8266 Guide

 5. Lesson 2: Dim an LED

5. Lesson 2: Dim an LED

5.1 Overview
In this lesson you will learn how to control the brightness of an LED.

5.2 Components required
• Development board;

• 1 x LED;

• 1 x 150 Ω resistor ;

• Breadboard 830p;

• 2 x male-to-male jumper wire;

• Micro USB – Type A USB Cable;

5.3 Theory
Pulse Width Modulation (PWM)
PWM is a modulation technique used to control the speed of motors or the

brightness of LEDs. PWM creates a square wave by switching between on and off.

The value that characterizes the PWM is the Duty Cycle. It represents the
duration in which the voltage is kept on. For example, 25% duty cycle means that 25%
of the period the voltage is high and 75% of the period the voltage is low. The PWM
frequency is about 1000 Hz, so the period is about 1 ms.

The duty cycle can be set using the instruction "analogWrite(value);". The
value is stored on 10 bits, so 0 coresponds to 0% duty cycle and 1023 coresponds to
100% duty cycle.

39
www.plusivo.com Plusivo – ESP8266 Guide

 5. Lesson 2: Dim an LED

5.4 Connection
Below, you can find the schematic:

Below, you can find a visual representation of the connections:

40
www.plusivo.com Plusivo – ESP8266 Guide

 5. Lesson 2: Dim an LED

5.5 Code
The code is pretty similar to the one included in the previous lesson. In

addition to the last code, now you will learn how to use the PWM signal. The code
for this lesson can be found in the folder "Lesson 2: Dim an LED".

We have to declare the pin used, and in the setup() function we need to set
the pin as OUTPUT using pinMode().

Code 5.5.1 Declaration and the setup() function

//the int variable "LED" stores the pin used by the LED
const int LED = D6;

//the setup function runs only once when the board is powered
void setup()
{
 //the following instruction initialises the pin stored in the
 //variable LED as OUTPUT
 pinMode(LED, OUTPUT);
}

In the loop() function we will use the function analogWrite(pin, value); to
set the brightness on the LED. The value can be from 0 (0% duty cycle, which means
that the LED is off) to 1023 (100% duty cycle and the LED will be at maximum
brightness). Using a for loop we will set the value from 0 to 1023 with a delay of 2
milliseconds to have time to see the fading. Also we are using another for loop to set
the value from 1023 to 0 with a delay of 2 milliseconds. The first for loop is used to
set the brightness of the LED from 0% to 100%, and the second is used to set the
brightness from 100% to 0%.

41
www.plusivo.com Plusivo – ESP8266 Guide

 5. Lesson 2: Dim an LED

Code 5.5.2 The loop() function

void loop()
{
 //PWM is generated using 10 bits, so it ranges between
 //0 and 1023 (2^10 = 1024)

 for(int fade = 0; fade < 1024; fade++)
 {
 //set the brightness of the LED using analogWrite();
 analogWrite(LED, fade);

 //wait 2 milliseconds
 delay(2);
 }

 //keep the LED at the maximum brightness for 500 ms
 delay(500);

 for(int fade = 1023; fade >= 0; fade--)
 {
 //set the brightness of the LED using analogWrite();
 analogWrite(LED, fade);

 //wait 2 milliseconds
 delay(2);
 }

 //keep the LED off for 500 ms
 delay(500);
}

42
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

6. Lesson 3: RGB LED

6.1 Overview
RGB LEDs are pretty similar to the LEDs used in the last lesson, but they

light multiple colours, rather than one. Basically, an RGB LED consists of 3 LEDs.
RGB stands for Red, Green and Blue. Using these 3 colours, you can create almost
any colour. They mostly come in 2 versions: common anode or common cathode. The
common pin is usually the longest one.

NOTE! Try not to mistake the common anode for common cathode LEDs as
it is very difficult to identify them.

They have either a common anode or a common cathode in order to reduce
the pins used, from 6 pins to just 4 pins. The common anode means that one positive
line (usually 3.3 V or 5 V) is used by all LEDs. On the other hand, the common
cathode means that the one ground line is shared by all LEDs.

6.2 Components required
• Development board;

• 4 x male-male jumper wires;

• 3 x 150 Ω resistors;

• 1 x RGB LED;

6.3 Components introduction
 RGB LED
At first sight, an RGB LED looks pretty similar to a regular LED. However,

inside the body, there are 3 LEDs: red, green and blue. By adjusting the brightness of
these 3 LEDs, you can get almost any colour.

Adjusting the brightness can be done in two ways:

• Using resistors of different resistance.

By limiting the current flowing through each LED, you can get different
colours. This method is not recommended as you need to have multiple resistors and
to intensively test in order to get the desired colour.

• Using the Pulse Width Modulation (PWM) technique.

The main advantage of this method is that you don't need to change the
resistors in order to modify the brightness of the LED. The development board
included in the kit has 8 digital pins capable of PWM (D1 – D8).

43
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

Here is a representation that helps you identify the terminal corresponding
the each colour:

In schematics, it is represented as follows:

6.4 Theory
Colour
The reason that you can mix these 3 colours (red, green, blue) in order to get

any colour is that our eyes have three types of light receptors (red, green, blue). By
processing the brightness of these 3 colours, our brain associate it with a colour of
the visible spectrum. The same technique is used in LCD TVs or smartphones.

44
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

 For example, in order to get yellow, you have to turn on the RED and GREEN
LEDs, and turn off the BLUE LED.

The problem with this method is that you can't get black. So, the closest we
can come to black with a RGB LED is to turn off all the three LEDs.

6.5 Connection
Here is the schematic:

Below, you can find a visual representation of the connections:

45
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

6.6 Code
The code is pretty similar to the one included in the previous two lessons, but

this time we will use an RGB LED, resulting in working with three LEDs. Also in this
code we have created our own functions, so you will learn how to do that. The code
for this lesson can be found in the "Lesson 3: RGB LED" folder.

In order to create a function, you have to know some basic things. Below, you
can find a picture that shows the core of a function. It must have a type, a name, and
code. The parameters are optional.

The type of the function depends on the value expected to be returned. In the
previously attached picture, there is no value returned so the type of the function is
void.

In the next example, the type of the function is int as it is returning an int
variable.

46
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

int sum(int a, int b)
{
 int c;
 c = a + b;
 return c;
}

The code begins with the declaration of two variables that stores the pins
used by the RGB LED. In the setup() function we are setting the pins as OUTPUT.

Code 6.6.1 Declaration and setup() function

//create 3 variables that are used to store the pins to which is the LED
//attached
const int red = D6;
const int green = D7;
const int blue = D8;

void setup()
{
 //declase the pins as OUTPUT
 pinMode(red, OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(blue, OUTPUT);
}

We will create 3 functions to fade one LED, two LEDs and three LEDs. The
first function will fade just one LED and it contains a for loop, the same as the first
for loop from the code from the previous lesson.

Code 6.6.2 Dimming one LED

void single (int ledPin)
{
 //PWM is generated using 10 bits, so it ranges between
 //0 and 1023 (2^10 = 1024)

 for (int fade = 0; fade < 1024; fade++)
 {
 //set the brightness of the LED using analogWrite();
 analogWrite(ledPin, fade);

 delay(2);//wait for 2 milliseconds
 }

 //turn off the led
 analogWrite(ledPin, 0);
}

Another function created is used to fade 2 LEDs at a time. The function is
similar with the single function, but we need to add in the for loop another

47
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

analogWrite for the second LED, and also turn off the LED at the end of the
function.

Code 6.6.3 Dimming two LEDs

void duo (int firstLed, int secondLed)
{
 for (int fade = 0; fade < 1024; fade++)
 {
 //set the brightness of the leds using analogWrite();
 analogWrite(firstLed, fade);
 analogWrite(secondLed, fade);
 delay(2);//wait for 2 milliseconds
 }

 //turn off both leds
 analogWrite(firstLed, 0);
 analogWrite(secondLed, 0);
}

The third new function is the one used to dim all the LEDs. This function is
also similar with the previous ones, all we need to to is to add another analogWrite
call for the third LED to control its brightness.

Code 6.6.4 Dimming all three LEDs

void all (int firstLed, int secondLed, int thirdLed)
{
 for (int fade = 0; fade < 1024; fade++)
 {
 //set the brightness of the LEDs using analogWrite();
 analogWrite(firstLed, fade);
 analogWrite(secondLed, fade);
 analogWrite(thirdLed, fade);
 delay(2);//wait for 2 milliseconds
 }

 //turn off all LEDs
 analogWrite(firstLed, 0);
 analogWrite(secondLed, 0);
 analogWrite(thirdLed, 0);
}

The only function left is loop(), where we will call all the functions we have
just created. Firstly, the single function will be called three times, because this
function will control each individual LED, the duo function will be called also three
times to combine two colours at a time and the all function will be called only one
time because it controls all the three LEDs of the RGB LED.

48
www.plusivo.com Plusivo – ESP8266 Guide

 6. Lesson 3: RGB LED

Code 6.6.5 The loop() function

void loop()
{
 //in the loop function we are going to call
 //the previously created functions

 //we are going to turn on the LEDs one by one
 single(red);
 single(green);
 single(blue);

 //turn on LEDs two by two
 duo(red, green);
 duo(red, blue);
 duo(green, blue);

 //turn on all 3 LEDs
 all(red, green, blue);
}

49
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

7. Lesson 4: Motor Control

7.1 Overview
In this lesson you will learn how to control a motor.

7.2 Components required
• Development board;

• Micro USB – Type A USB cable;

• L293D H-Bridge Motor Driver;

• Breadboard 830p;

• Breadboard power supply;

• 9 x male-to-male jumper wires;

• 1 x DC motor;

7.3 Components introduction
L293D H-Bridge
Because the board isn't powerful enough alone to power a motor we are

going to use a DC motor driver in between the development board and the motors.

For this tutorial we use the L293D H-Bridge Motor Driver.

An H-bridge is an electronic circuit that enables a voltage to be applied
across a load in opposite direction. These bridges are often used in robotics as they
allow DC motors to run forwards or backwards.

50
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

This is an open H-Bridge schematic. The motor is not connected to any of the
poles of the power supply, as all the four switches are open (S1, S2, S3, S4).

These are the two basic states of a H-Bridge. As you can see the voltage runs
in opposite directions depending to what switches are closed.

We are going to represent shortly in a small table what each switch state does
to the motor. 1 means that the switch is closed and 0 that the switch is open.

51
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

S1 S2 S3 S4 Result

1 0 0 1 Motor moves right

0 1 1 0 Motor moves left

0 0 0 0 Motor coasts

1 0 0 0 Motor coasts

0 1 0 0 Motor coasts

0 0 1 0 Motor coasts

0 0 0 1 Motor coasts

0 0 1 1 Motor brakes

1 1 0 0 Motor brakes

1 0 1 0 Short circuit

0 1 0 1 Short circuit

0 1 1 1 Short circuit

1 0 1 1 Short circuit

1 1 0 1 Short circuit

1 1 1 0 Short circuit

1 1 1 1 Short circuit

The L293D Motor Driver has two voltage entrances to power the driver, and
subsequently the motors. The Vss entrance is used to power the driver, and the Vs
entrance to power the motors.

The pins we will control are EN1, EN2, IN1, IN2, IN3, IN4. EN1 and EN2
are enable pins (we use them basically to start the motor). The IN1, IN2 and
respectively the IN3, IN4 control the direction of the rotation.

Breadboard power supply
This power supply is pretty useful in prototyping because it is breadboard

friendly and has variable outputs, 3.3 V or 5 V.

52
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

The only way to power this power supply is through DC jack. Supply voltage
must be between 6.5 V and 12 V. DO NOT try to power the module via USB port, it is
only for output.

In order to select the output voltage, you have to move a jumper between
different pins. For example, in the above image, the jumper in the red rectangle is
set to 5 V and the jumper in the green rectangle is set to OFF (this means that there
is no output voltage).

Moreover, there is a button, located next the input jack, that turns the module
on/off.

7.4 Connections
Below, you can find the schematic:

Below, you can find a visual representation of the connections:

53
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

7.5 Code
The code required to control a motor can be found in the folder called

"Lesson 4: Motor Control", and it is similar to the one included in the previous
lesson. In addition to that code, you will learn how to use the PWM signal to set the
speed of a motor from 0 (off) to full speed.

The code starts with the declaration of three variables that stores the three
pins used to control the motor: the speed pin and the direction pins. In the setup()
function we will set the pins as OUTPUT.

Code 7.5.1 The setup() function

void setup()
{
 //the following instruction initialise the pin stored in the
 //variable motorspeed_pin(also DIRA and DIRB) as OUTPUT
 pinMode(motorspeed_pin, OUTPUT);
 pinMode(DIRA, OUTPUT);
 pinMode(DIRB, OUTPUT);
}

We will create a new function that will turn off the motor by setting the
speed pin and direction pins to LOW, using the digitalWrite.

54
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

Code 7.5.2 Function for turning off the motor

void turnOff()
{
 //this instruction is used to set the speed of the motor to 0 (off)
 digitalWrite(motorspeed_pin, LOW);
 //in these instructions the state is irrelevant because the motor is off
 digitalWrite(DIRA, LOW);
 digitalWrite(DIRB, LOW);
 //wait 1.5 seconds
 delay(delayOff);
}

In the loop() function we will first turn on the motor at maximum speed, by
setting the motorspeed_pin to HIGH, and the DIRA pin to HIGH and DIRB pin
to LOW for turning the motor in one direction, and the DIRA pin to LOW and
DIRB pin to HIGH for turning the motor in the opposite direction. The first time we
will turn on the motor at maximum speed in one direction, then turn it off for some
time, then turn it on at maximum speed in the opposite direction, then turn it off.

Next, we will turn on the motor in one direction at 50% speed using the
analogWrite(motorspeed_pin, value) function with a value of 512, which is
approximately 50% speed, and DIRA pin to HIGH and DIRB pin to LOW. We will
turn off the motor and then repeat the previous instructions, but this time DIRA pin
will be set to LOW and DIRB pin to HIGH so that the speed of the motor will be
50% and the motor will rotate in the opposite direction.

55
www.plusivo.com Plusivo – ESP8266 Guide

 7. Lesson 4: Motor Control

Code 7.5.3 The loop() function
void loop()
{
 //this instruction is used to set the maximum speed of the motor
 digitalWrite(motorspeed_pin, HIGH);
 //these instructions are used to turn on the motor in one direction
 digitalWrite(DIRA, HIGH);
 digitalWrite(DIRB, LOW);
 delay(delayOn);

 //turn off the motor
 turnOff();

 //this instruction is used to set the maximum speed of the motor
 digitalWrite(motorspeed_pin, HIGH);
 //these instructions are used to turn on the motor in the opposite direction
 digitalWrite(DIRB, HIGH);
 digitalWrite(DIRA, LOW);
 //wait 3 seconds
 delay(delayOn);

 //turn off the motor
 turnOff();

 //this instruction sets the motor speed to about 50%
 //you can put any integer from 0 to 1023
 analogWrite(motorspeed_pin, 512);
 //these instructions are used to turn on the motor in one direction
 digitalWrite(DIRA, HIGH);
 digitalWrite(DIRB, LOW);
 //wait 3 seconds
 delay(delayOn);

 //turn off the motor
 turnOff();

 //this instruction sets the motor speed to about 50%
 analogWrite(motorspeed_pin, 512);
 //these instructions are used to turn on the motor in the opposite direction
 digitalWrite(DIRB, LOW);
 digitalWrite(DIRA, HIGH);
 //wait 3 seconds
 delay(delayOn);

 //turn off the motor
 turnOff();
}

56
www.plusivo.com Plusivo – ESP8266 Guide

 8. Lesson 5: Ultrasonic HC-SR04+

8. Lesson 5: Ultrasonic HC-SR04+

8.1 Overview
In this lesson you will learn how to use the ultrasonic module in order to

calculate the distance from 2 centimeters and up to 4 meters.

8.2 Components required
• Development board;

• Ultrasonic module HC-SR04+;

• Breadboard 830p;

• 4 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

8.3 Components introduction
Ultrasonic HC SR04+
The ultrasonic module consists of an ultrasonic transmitter and an ultrasonic

receiver.

57
www.plusivo.com Plusivo – ESP8266 Guide

 8. Lesson 5: Ultrasonic HC-SR04+

The transmitter is used to generate an ultrasonic sound at about 40 kHz.
When there is an object in front of the transmitter, the ultrasound is bounced back to
the receiver. Knowing the speed of sound, we can calculate the distance to that object
with an accuracy of up to 3mm.

Below, you can learn how to calculate the distance using the speed of sound.

1) Transmitter emits an ultrasonic sound for about 10 microseconds. 1
microsecond (1μs) is equally to 10s) is equally to 10-6 seconds (0.000001 seconds).

2) If there is an object, the ultrasonic sound is bounced back to the sensor,
where the receiver is listening.

3) Now, we have to record the time it takes the sound to travel from the
transmitter to object and back to the receiver.

4) Using the speed of sound (0.034 cm/μs) is equally to 10s), you can calculate the distance using
the following formula:

d=
t⋅v
2

where:

• d represents the distance in centimeters;

• t represents the time passed for the sound to return to the receiver;

• v represents the speed of sound (0.034 cm/μs) is equally to 10s);

58
www.plusivo.com Plusivo – ESP8266 Guide

 8. Lesson 5: Ultrasonic HC-SR04+

This ultrasonic module can work with voltages between 3V and 5.5V and has
a small operating current (3 mA).

8.4 Connections
Below you can see the schematic:

Next you will find the visual representation:

8.5 Code
The code required for this lesson can be found in the folder called "Lesson 5:

Ultrasonic HC-SR04+".

The code begins with the declaration of the pins used by the ultrasonic
module, echo and trigger. Also, we will need two variables, duration and distance,
to calculate the distance. These two variables will help us later. In the setup()

59
www.plusivo.com Plusivo – ESP8266 Guide

 8. Lesson 5: Ultrasonic HC-SR04+

function we will start a serial communication with the computer at a baud rate of
115200, using the instruction Serial.begin(115200), so that we can display the
distance in Serial Monitor. Next we will set the trigger pin as OUTPUT and the
echo pin as INPUT.

Code 8.5.1 Variables declaration and setup() function

//declare the pins used by the module
const int echoPin = D5;
const int trigPin = D3;

//declare 2 variables which help us later to calculate the distance
long duration;
double distance;

void setup()
{
 //start the serial communication with the computer at 115200 bits/s
 Serial.begin(115200);

 Serial.println("The board has started");

 //the trigger pin (transmitter) must be set as OUTPUT
 pinMode(trigPin, OUTPUT);

 //the echo pin (receiver) must be set as INPUT
 pinMode(echoPin, INPUT);
}

The loop() function starts by setting the trigger pin to LOW, in order to
prepare for a reading, and set a delay of 2 microseconds.

In order to calculate the distance, we need the time that the sound travels
from the transmitter to object and back to the receiver. For that, we have to generate
an ultrasound by turning the transmitter ON for 10 microseconds (1 microsecond =
10-6 seconds) then record the sound wave travel time using the following instruction:

duration = pulseIn(pin, VALUE, timeout);

where:

• pin (type int) : represents the number of the pin on which we want to read
the pulse

• value: type of pulse (either HIGH or LOW);

• timeout (unsigned long): the number of microseconds to wait for the pulse
to start.

Now that you have the duration of the pulse, you can calculate the distance
using the following formula:

60
www.plusivo.com Plusivo – ESP8266 Guide

 8. Lesson 5: Ultrasonic HC-SR04+

d=
t⋅v
2

where:

• d – represents the distance in centimeters;

• t – represents the duration of the pulse;

• v – represents the speed of sound in air (about 0.034 cm/μs) is equally to 10s).

Do not forget to divide the result by 2 as the sound has to travel the same
distance twice (forwards and bounce backwards).

After calculating the distance, we will display it in Serial Monitor. Below is
the loop() function:

Code 8.5.2 Calculate the distance and display it in Serial Monitor in real time

void loop()
{
 //set the trigPin to LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 delayMicroseconds(2);

 //generate an ultrasound for 10 microseconds then turn off the transmitter
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //reads the echoPin, returns the sound wave travel time in microseconds
 duration = pulseIn(echoPin, HIGH);

 //using the formula shown in the guide, calculate the distance
 distance = duration*0.034/2;

 //print the distance in Serial Monitor
 Serial.print("Distance: ");
 Serial.print(distance);
 Serial.println(" cm");
}

After uploading the code, in the Serial Monitor you can observe the
distance, in real time, between the module and the nearest obstacle/object. For
opening the Serial Monitor, in the Arduino IDE, you can use the shortcut
Ctrl+Shift+M or go to Tools -> Serial Monitor.

61
www.plusivo.com Plusivo – ESP8266 Guide

 9. Lesson 6: RGB LED and Ultrasonic

9. Lesson 6: RGB LED and Ultrasonic

9.1 Overview
This lesson combines two lessons, lesson 3, RGB LED, and lesson 5,

Ultrasonic HC-SR04+, and you will learn how to flash an LED depending on distance.

9.2 Components required
• Development board;

• Breadboard 830p;

• 1 x RGB LED;

• 3 x 150Ω resistor;

• 10 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

9.3 Connections
Below, you can find the schematic:

Next, you can find a visual representation of the project:

62
www.plusivo.com Plusivo – ESP8266 Guide

 9. Lesson 6: RGB LED and Ultrasonic

9.4 Code
The code for this lesson combines the code from two lessons, RGB LED and

Ultrasonic HC-SR04+. You can find the code in the folder "Lesson 6: RGB LED and
Ultrasonic".

The code starts with the declaration of the variables used and sums up the
variables from the codes of the two lessons. In the setup() function, firstly, we have
to start the serial communication with the computer, and then set the pins used by
the RGB LED as OUTPUT, set the trigger pin as OUTPUT and the echo pin to
INPUT.

Code 9.4.1 The setup() function

void setup()
{
 //start the serial communication with the computer at 115200 bits/s
 Serial.begin(115200);

 //set the mode of the pins used by the RGB LED as OUTPUT
 pinMode(red, OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(blue, OUTPUT);

 //the trigger pin (transmitter) must be set as OUTPUT
 pinMode(trigPin, OUTPUT);

 //the echo pin (receiver) must be set as INPUT
 pinMode(echoPin, INPUT);
}

In the loop() function we will calculate the distance, as in the previous
lesson, and then, using an if statement, we will decide if the distance is lower than 25
centimeters, the red LED will flash at a interval of 35 ms. If the distance is greater
than 25 cm, the green LED will slowly flash.

63
www.plusivo.com Plusivo – ESP8266 Guide

 9. Lesson 6: RGB LED and Ultrasonic

Code 9.4.2 Calculate the distance and flash the LEDs depending on distance
void loop()
{
 //set the trigPin to LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 delayMicroseconds(2);

 //generate an ultrasound for 10 microseconds then turn off the transmitter.
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //reads the echoPin, returns the sound wave travel time in microseconds
 duration = pulseIn(echoPin, HIGH);

 //using the formula shown in the guide, calculate the distance
 distance = duration*0.034/2;

 //display the distance in Serial Monitor
 Serial.println(distance);

 if(distance < 25)
 {
 //the next 4 instructions are used
 //to create the flashing effect
 //turn on the LED and wait 35 ms
 digitalWrite(red, HIGH);
 delay(35);

 //turn off the LED and wait 35 ms
 digitalWrite(red, LOW);
 delay(35);
 }
 else
 {
 //turn on the green LED and wait 300 ms
 digitalWrite(green, HIGH);
 delay(300);

 //turn off the green LED and wait 200 ms
 digitalWrite(green, LOW);
 delay(200);
 }
}

64
www.plusivo.com Plusivo – ESP8266 Guide

 10. Lesson 7: Digital Inputs

10. Lesson 7: Digital Inputs

10.1 Overview
In this lesson, you are going to learn how to use a push button as a digital

input to turn an LED on and off.

10.2 Components required
• Development board;

• Breadboard 830p;

• 2 x push buttons;

• 1 x LED;

• 1 x 150 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

10.3 Components introduction
Momentary push button switch
This type of button is very common in prototyping as it is breadboard

friendly, cheap and reliable. The way it works is pretty basic: there are 2 lines: A-C
and B-D, which are always connected. When the button is pressed, these two lines A-
C and B-D, are connected together, which means that the current will flow from A to
D and from B to C.

65
www.plusivo.com Plusivo – ESP8266 Guide

 10. Lesson 7: Digital Inputs

10.4 Connections
Below you can find the schematic:

Next, you can find a visual representation of the project:

10.5 Code
The code for this lesson can be found in the folder "Lesson 7: Digital

Inputs".

The code is very simple. First, we have to declare the pins used by the buttons
and the LED. We will connect the “On” button to D1 and the “Off” button to D2. The

66
www.plusivo.com Plusivo – ESP8266 Guide

 10. Lesson 7: Digital Inputs

LED will be connected to D7. In the setup() function we will set the pins for the
buttons as INPUT_PULLUP and the pin for the LED as OUTPUT.

Code 10.5.1 The setup() function

void setup()
{
 //in order to read the state of a button, firstly, we have
 //to set the mode of the pin used by it as INPUT_PULLUP.
 pinMode(buttonON, INPUT_PULLUP);
 pinMode(buttonOFF, INPUT_PULLUP);

 //set the mode of the pin used by the led as OUTPUT
 pinMode(led, OUTPUT);
}

The loop() function will wait for the buttons to be pressed, and if the On
button was pushed, then the LED will turn On, and if the Off button was pushed,
then the LED will be turned Off. In order to check the state of a button (if it is pressed
or not), you have to use the instruction digitalRead(pin). If the value returned by
this instruction is 0 (or LOW), it means that the button is pressed. Contrary, if the
value is 1 (or HIGH), it means that the button is not pressed.

Code 10.5.2 The loop() function

void loop()
{
 //check if the button "ON" was pressed and turn on the LED
 if(digitalRead(buttonON) == 0)
 {
 //turn on the LED
 digitalWrite(led, HIGH);
 }

 //check if the button "OFF" was pressed and turn off the LED
 if(digitalRead(buttonOFF) == 0)
 {
 //turn off the LED
 digitalWrite(led, LOW);
 }

 //wait for 0.1s (100 ms)
 delay(100);
}

67
www.plusivo.com Plusivo – ESP8266 Guide

 11. Lesson 8: Control an LED using push buttons

11. Lesson 8: Control an LED using push
buttons

11.1 Overview
In this lesson, you are going to learn how to use two push buttons to control

the brightness of an LED.

11.2 Components required
• Development board;

• Breadboard 830p;

• 2 x push buttons;

• 1 x LED;

• 1 x 150 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

11.3 Connections
Below you can find the schematic:

68
www.plusivo.com Plusivo – ESP8266 Guide

 11. Lesson 8: Control an LED using push buttons

Next, you can find a visual representation of the project:

11.4 Code
The code for this lesson can be found in the folder "Lesson 8: Control an

LED using push buttons" and it is easy to understand. The code starts with the
declaration of the pins used by the buttons and the LED. The button that will reduce
the brightness is connected to D1 and the button for increasing the brightness is
connected to D2. Also, we need an integer variable that will store a value from 0 (0%
duty cycle) to 1023 (100% duty cycle).

Code 11.4.1 Variables declaration

//define the pins used by the buttons and led
const int button_down = D1;
const int button_up = D2;
const int led = D7;

//declare a variable that will store a value
//from 0 to 1023
int container = 0;

In the setup() function we will set the pins used by the buttons as
INPUT_PULLUP and the pin used by the LED as OUTPUT.

Code 11.4.2 The setup() function

void setup()
{
 //in order to read the state of a button, firstly, you have
 //to set the mode of the pin used by it as INPUT_PULLUP.
 pinMode(button_down, INPUT_PULLUP);
 pinMode(button_up, INPUT_PULLUP);

 //set the mode of the pin used by the LED as OUTPUT
 pinMode(led, OUTPUT);
}

69
www.plusivo.com Plusivo – ESP8266 Guide

 11. Lesson 8: Control an LED using push buttons

In the loop() function we have two while loops, one for each button. When
the down button is pressed, an if statement will change the value of container, and
turn on the LED at the new value. Also, we will need a delay, in this case we have
chosen 50 ms, between runs.

Code 11.4.3 Reduce the brightness

 while(digitalRead(button_down) == 0)
 {
 //the minimum value for container is 0, so if the
 //value is greater than 50, we can substract 50
 //else, the value will be set to 0
 if(container > 50)
 {
 //change the value
 container = container - 50;
 }
 else
 {
 //set the value to 0
 container = 0;
 }

 //turn on the LED
 analogWrite(led, container);
 //wait 50 ms before the next run
 delay(50);
 }

The second while loop deals with increasing the brightness, and it is similar
with the while loop for reducing the brightness, the only difference is that the value
of container will increase in this case.

70
www.plusivo.com Plusivo – ESP8266 Guide

Code 11.4.4 Increase the brightness

 while(digitalRead(button_up) == 0)
 {
 //the maximum value for container is 1023
 //if the value is less than 972, we can add 50
 //otherwise, the container will be set to 1023
 if(container < 972)
 {
 container = container + 50;
 }
 else
 {
 container = 1023;
 }

 //turn on the LED
 analogWrite(led, container);
 //wait 50 ms before the next run
 delay(50);
 }

71
www.plusivo.com Plusivo – ESP8266 Guide

 12. Lesson 9: Buzzer

12. Lesson 9: Buzzer

12.1 Overview
In this lesson you will learn how to connect and use a buzzer.

12.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

12.3 Components introduction
Buzzer
A buzzer is an audio signaling device that makes a buzzing sound at different

frequencies. There are two types of buzzers, active and passive. In our project, we use
a passive one. A passive buzzer can make different tones, but it requires a PWM
signal from the device which controls the buzzer, in order to produce a noise.

Make sure that you respect the polarity of the component. Usually, there is a
plus sign on top of the buzzer that shows which pin is the positive one.

Transistor

72
www.plusivo.com Plusivo – ESP8266 Guide

 12. Lesson 9: Buzzer

A transistor is a device that regulates current or voltage flow and acts as a
switch or gate for electronic signals. Transistors are composed of semiconductor
material, with three layers. The transistor's three-layer structure contains an N-type
semiconductor layer sandwiched between P-type layers (a PNP configuration) or a P-
type layer between N-type layers (an NPN configuration). The most common
transistor configuration used is the NPN Transistor. You can find below a basic
scheme for both types:

The three pins are: Base (B), Collector (C) and Emitter (E). In a standard NPN
transistor, you need to apply a voltage of about 0.7V between the base and the emitter
to get the current flowing from base to emitter. When you apply 0.7V from base to
emitter you will turn the transistor ON and allow a current to flow from collector to
emitter.

Diode
A diode is an electrical device allowing current to move in one direction. The

most common kind of diode in modern circuit design is the semiconductor diode.
Diodes can be used as rectifiers, signal limiters, voltage regulators, switches, signal

73
www.plusivo.com Plusivo – ESP8266 Guide

 12. Lesson 9: Buzzer

modulators, oscillators etc. Below, you can find the schematic symbol and the real
component appearance.

12.4 Connections
Below you can find the schematic:

Also, you can find below a visual representation of the project:

74
www.plusivo.com Plusivo – ESP8266 Guide

 12. Lesson 9: Buzzer

12.5 Code
The concept of the code is similar to the one used to turn on/off an LED, but

this time we will change the code to turn on/off a buzzer.

The code can be found in the folder called "Lesson 9: Buzzer".

The code starts with the declaration of the pin used by the buzzer. We will
use D6 for the buzzer. In the setup() function we will set the pin as OUTPUT.

Code 12.5.1 The setup() function

void setup()
{
 //set the mode of the pin used by the buzzer as OUTPUT
 pinMode(buzzer, OUTPUT);
}

In the loop() function we will turn on the buzzer at a frequency of 1000 Hz
for 1 second, then turn it off for 1 second. To turn on the buzzer we use a function
called tone(pin, frequency), where the frequency can be as low as 31 Hz. To turn off
the buzzer, we use noTone(pin). Let’s also turn on the buzzer at 500 Hz for 1 second,
then turn it off for 1 second.

75
www.plusivo.com Plusivo – ESP8266 Guide

 12. Lesson 9: Buzzer

Code 12.5.2 The loop() function

void loop()
{
 //turn on the buzzer and wait 1 s
 //we use a frequency of 1kHz(1000Hz)
 //you can change this frequency so the sound can be
 //more pleasant
 tone(buzzer, 1000);
 delay(1000);

 //turn off the buzzer and wait 1 s
 noTone(buzzer);
 delay(1000);

 //turn on the buzzer at a frequency
 //of 500Hz and wait 1 s
 tone(buzzer, 500);
 delay(1000);

 //turn off the buzzer
 noTone(buzzer);
 delay(1000);
}

76
www.plusivo.com Plusivo – ESP8266 Guide

 13. Lesson 10: Buzzer and Digital Inputs

13. Lesson 10: Buzzer and Digital Inputs

13.1 Overview
In this lesson, you will learn how to connect and use a buzzer along with a

push button as a digital input.

13.2 Components required
• Development board;

• Breadboard 830p;

• 1 x push button;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 10 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

13.3 Connections
Below you can find the schematic:

This scheme looks a little complicated, so let's simplify it by using some new
electrical symbols. Sometimes, on really busy schematics, you can assign special

77
www.plusivo.com Plusivo – ESP8266 Guide

 13. Lesson 10: Buzzer and Digital Inputs

symbols to node voltages. You can connect devices to these one-terminal symbols,
and it'll be tied directly to 5V, 3.3V, VCC, or GND (ground).

For GND (ground) we will use the next symbol:

For +3.3V we will use:

Using the above defined symbols, our scheme is equivalent with:

We will be using these symbols when our schemes will be too complicated to
follow, so keep them in mind. Also, below is a visual representation of the project,
check it too for a better understanding.

78
www.plusivo.com Plusivo – ESP8266 Guide

 13. Lesson 10: Buzzer and Digital Inputs

13.4 Code
The code is similar with the one in the previous lesson, the only difference is

the push button. You can find the code in the folder "Lesson 10: Buzzer and Digital
Inputs".

After the declaration of the pins used by the buzzer and the button, in the
setup() function we need to set the mode of the pins, therefore the buzzer will be set
as OUTPUT and the button as INPUT_PULLUP.

Code 13.4.1 The setup() function

void setup()
{
 //set the mode of the pin used by the buzzer as OUTPUT
 pinMode(buzzer, OUTPUT);

 //in order to read the state of a button, firstly, you have
 //to set the mode of the pin used by it as INPUT_PULLUP
 pinMode(button, INPUT_PULLUP);
}

In the loop() function we have to read the state of the button using
digitalRead(button), and if the button is pressed (digitalRead(button) == 0), the
buzzer will turn on at a frequency of 1000 Hz (you can modify this frequency). After
the if statement we need to put a while loop to stop the loop() function from rolling,
with the argument digitalRead(button) == 0. If we leave the while loop without
any instruction to run, the board will crash. So we need to put a yield() (this function
is created only for ESP8266), which calls on the background functions to allow them
to do their things. At the end of the loop() function we will put a command to turn
off the buzzer and a delay of 100 ms.

79
www.plusivo.com Plusivo – ESP8266 Guide

 13. Lesson 10: Buzzer and Digital Inputs

Code 13.4.2 The loop() function

void loop()
{
 //read the current state of the button
 //if the button is pressed, turn on the buzzer
 if(digitalRead(button) == 0)
 {
 //we use a frequency of 1kHz(1000Hz)
 //you can change this frequency so the sound can be
 //more pleasant
 tone(buzzer, 1000);
 }

 //if the button is pushed down, we need something
 //to keep the loop() function from running
 while(digitalRead(button) == 0)
 {
 //if we leave the while with no instructions to do
 //the board will crash, because it will stay too long
 //in a while loop() and other processes will not be able to run
 yield();
 }

 noTone(buzzer);

 //wait 0.1 s
 delay(100);
}

80
www.plusivo.com Plusivo – ESP8266 Guide

 14. Lesson 11: Buzzer and Ultrasonic

14. Lesson 11: Buzzer and Ultrasonic

14.1 Overview
This lesson combines two lessons, lesson 9, Buzzer, and lesson 5, Ultrasonic

HC-SR04+, and you will learn how to trigger a buzzer depending on distance.

14.2 Components required
• Development board;

• Breadboard 830p;

• Ultrasonic module HC-SR04+;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor ;

• 11 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

14.3 Connections
Below, you can find the schematic:

81
www.plusivo.com Plusivo – ESP8266 Guide

 14. Lesson 11: Buzzer and Ultrasonic

In the scheme above we used two symbols defined in the previous lesson. If
you do not understand how to do all the connections, please check the previous
lesson, the visual representation below and, also, you can find the scheme without
using the symbols for +3.3V and GND in the folder "Lesson 11: Buzzer and
Ultrasonic".

Next, you can find a visual representation of the project:

14.4 Code
The code for this lesson combines the code from the two lessons described at

the beginning of this lesson.

This lesson has a similar principle with the lesson RGB LED and
Ultrasonic. In that lesson, when the distance was lower than 25 cm, the red LED
started to flash. This time, when the distance is lower than 25 cm, the buzzer will start
to beep at an interval of 50 ms. When distance is higher than 25 cm, the buzzer will
be turned off. The code for this lesson can be found in the folder "Lesson 11: Buzzer
and Ultrasonic".

Like in the lesson RGB LED and Ultrasonic, we have to declare the pins
used by the ultrasonic module, trigger and echo, the pin used by the buzzer and two
variables used later for calculating the distance. In the setup() function we will begin
by starting a serial communication with the computer, then set the pin used by the
buzzer as OUTPUT, the trigger as OUTPUT and the echo as INPUT.

82
www.plusivo.com Plusivo – ESP8266 Guide

 14. Lesson 11: Buzzer and Ultrasonic

Code 14.4.1 The setup() function

void setup()
{
 //start the serial communication with the computer at 115200 bits/s
 Serial.begin(115200);

 //set the mode of the pin used by the buzzer as OUTPUT
 pinMode(buzzer, OUTPUT);

 //the trigger pin (transmitter) must be set as OUTPUT
 pinMode(trigPin, OUTPUT);

 //the echo pin (receiver) must be set as INPUT
 pinMode(echoPin, INPUT);
}

In the loop() function we will first calculate the distance. To calculate the
distance we need the travel time of the sound wave generated by turning the
transmitter ON for 10 microseconds. After finding the travel time (duration in our
code), the distance can be calculated with the following formula:

distance = duration*0.034/2;

Next, we will use an if statement to decide if the distance is lower than 25
cm, then we will turn On and Off the buzzer at a frequency of 1000 Hz with a 50 ms
interval. If the distance is higher than 25 cm, the buzzer is turned Off.

83
www.plusivo.com Plusivo – ESP8266 Guide

 14. Lesson 11: Buzzer and Ultrasonic

Code 14.4.2 The loop() function
void loop()
{
 //set the trigPin to LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 delayMicroseconds(2);

 //generate an ultrasound for 10 microseconds then turn off the transmitter
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //reads the echoPin, returns the sound wave travel time in microseconds
 duration = pulseIn(echoPin, HIGH);

 //using the formula shown in the guide, calculate the distance
 distance = duration*0.034/2;

 if(distance < 25)
 {
 //creating the beeping effect
 //turn on the buzzer at a
 //frequency of 1kHz(1000Hz)
 //and wait 50 ms
 tone(buzzer, 1000);
 delay(50);

 //turn off the buzzer
 //and wait 50 ms
 noTone(buzzer);
 delay(50);
 }
 else
 {
 //turn off the buzzer
 noTone(buzzer);
 }

 //wait for 0.1s
 delay(100);
}

84
www.plusivo.com Plusivo – ESP8266 Guide

 15. Lesson 12: Play songs with a buzzer

15. Lesson 12: Play songs with a buzzer

15.1 Overview
In this lesson you will learn how to play songs using the buzzer. We have

created two songs that you can play with the buzzer. If you are more talented, you
can write more complicated songs.

15.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 2 x push button;

• 1 x 1000 Ω resistor ;

• 12 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

15.3 Connections
Below you can find the schematic:

85
www.plusivo.com Plusivo – ESP8266 Guide

 15. Lesson 12: Play songs with a buzzer

You can find the scheme without the electrical symbols for GND and 3.3V in
the folder called "Lesson 12: Play song with a buzzer".

Below, you can find a visual representation of the project:

15.4 Code
The code for this lesson can be found in the folder called "Song" which is

inside the folder "Lesson 12: Play song with a buzzer".

The code starts with the declaration of the approximative frequencies for the
notes for all the seven octaves, then declaring the pins used by the buzzer and the
two buttons. In the setup() function we will set the pin used by the buzzer as
OUTPUT and the pins for the buttons as INPUT_PULLUP.

Code 15.4.1 The setup() function

void setup()
{
 //set the mode of the pins
 pinMode(buzzer, OUTPUT);
 pinMode(button1, INPUT_PULLUP);
 pinMode(button2, INPUT_PULLUP);
}

In the loop() function we will use two if statements and if the first button
was pressed, then the buzzer will play the first song (ABC Alphabet), or if the second
button was pressed, then the buzzer will play the second song (Old Mcdonald had a
farm). Every song is defined by a function: first song (abc_song()) and the second
song (old_mcdonald()).

86
www.plusivo.com Plusivo – ESP8266 Guide

Code 15.4.2 The loop() function

void loop()
{
 //if the first button was pressed, play the first song
 if(digitalRead(button1) == 0)
 {
 //play ABC Alphabet song
 abc_song();
 }

 //if the second button was pressed, play the second song
 if(digitalRead(button2) == 0)
 {
 //play the second song
 old_mcdonald();
 }
}

The abc_song() function created for the first song starts with a declaration of
the waiting times between notes and the playing times for notes. The song has six
parts, each part contains multiple notes. We will turn on the buzzer and play a note
for a specified time, then turn off the buzzer for the specified time. In the snipped
below, you can find one of the six parts of the song.

87
www.plusivo.com Plusivo – ESP8266 Guide

Code 15.4.3 The function for the first song
 //define the waiting times
 int delay1 = 700;
 int delay2 = 1000;
 int delay3 = 300;
 int delay4 = 100;

 //play every note indicated for delay1 (or delay2, or delay3)
 //milliseconds, then turn off the buzzer for delay4 milliseconds
 //then play the next note

 //first sequence
 //play: C C G G A A G
 tone(buzzer, c7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, c7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, g7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, g7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, a7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, a7);
 delay(delay1);
 noTone(buzzer);
 delay(delay4);

 tone(buzzer, g7);
 delay(delay2);
 noTone(buzzer);
 delay(delay4);

The old_mcdonald() function created for the second song starts with the
declaration of the waiting times between notes and the playing times for notes. The
song has eight parts, each part contains multiple notes. We will turn on the buzzer
and play a note for a specified time, then turn off the buzzer for the specified time. In
the snipped below, you can find one of the eight parts of the song.

88
www.plusivo.com Plusivo – ESP8266 Guide

Code 15.4.4 The function for the second song
 //play every note indicated for time1 (or time2,
 //or time3, or time4, or time5) milliseconds,
 //then turn off the buzzer for time0 milliseconds
 //then play the next note
 int time0 = 100;
 int time1 = 300;
 int time2 = 600;
 int time3 = 900;
 int time4 = 550;
 int time5 = 200;

 //first part
 //play: C C C G A A G
 tone(buzzer, c4);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, c4);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, c4);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, g3);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, a4);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, a4);
 delay(time1);
 noTone(buzzer);
 delay(time0);

 tone(buzzer, g3);
 delay(time2);
 noTone(buzzer);
 delay(time0);

This code is too long, so let's simplify it. The modified code can be found in
the folder called Song_simplified, which is inside the "Lesson 12: Play songs with
a buzzer" folder. The declaration, setup() function and loop() function will remain
the same, we only have to modify the abc_song() function and old_mcdonald()
function. For each sequence we will create two arrays that will store the order of the
notes and the playing time for each note. Then, we will use a for loop to go through
all the elements of the arrays and play the notes in order for the right time (same as
in the long code). Below you can find two sequences of the first song:

89
www.plusivo.com Plusivo – ESP8266 Guide

Code 15.4.5 The code for the first song, simplified
 //first sequence
 //play: C C G G A A G
 //create two arrays: one that stores the notes in order and
 //another that stores the playing time for each note
 const int sequence_1_notes[] = {c7, c7, g7, g7, a7, a7, g7};
 const int sequence_1_delays[] =
 {
 delay1, delay1, delay1, delay1, delay1, delay1, delay2
 };

 //using the for loop we will play all the notes in the correct
 //order
 for(int i = 0; i < 7; i++)
 {
 //play "i" note
 tone(buzzer, sequence_1_notes[i]);
 //time for playing the "i" note
 delay(sequence_1_delays[i]);
 //turn off the buzzer
 noTone(buzzer);
 delay(delay4);
 }

 //second sequence
 //play: F F E E D D D D C
 const int sequence_2_notes[] = {f7, f7, e7, e7, d7, d7, d7, d7, c7};
 const int sequence_2_delays[] =
 {
 delay1, delay1, delay1, delay1, delay3, delay3, delay3, delay3, delay2
 };

 for(int i = 0; i < 9; i++)
 {
 tone(buzzer, sequence_2_notes[i]);
 delay(sequence_2_delays[i]);
 noTone(buzzer);
 delay(delay4);
 }

The structure of the function created for the second song, old_mcdonald(),
is the same as for the one created for the first song. Below you can find a part of the
second song:

90
www.plusivo.com Plusivo – ESP8266 Guide

Code 15.4.6 The code for the second song, simplified

 //first part
 //play: C C C G A A G
 const int sequence_1_notes[] = {c4, c4, c4, g3, a4, a4, g3};
 const int sequence_1_delays[] =
 {
 time1, time1, time1, time1, time1, time1, time2
 };

 for(int i = 0; i < 7; i++)
 {
 tone(buzzer, sequence_1_notes[i]);
 delay(sequence_1_delays[i]);
 noTone(buzzer);
 delay(time0);
 }

One sequence is different because we are using only one note. So, the array
for the notes is composed from a single note, and in the for loop we will play on the
buzzer that note for the entire running of the for loop.

Code 15.4.7 The sixth part of the second song

 //sixth part
 //play: C C C C C C C C C C C C
 const int sequence_6_notes[] = {c4};
 const int sequence_6_delays[] =
 {
 time5, time5, time1, time5, time5, time1, time5, time5, time5, time5,
time1, time1
 };

 for(int i = 0; i < 12; i++)
 {
 tone(buzzer, sequence_6_notes[0]);
 delay(sequence_6_delays[i]);
 noTone(buzzer);
 delay(time0);
 }

91
www.plusivo.com Plusivo – ESP8266 Guide

 16. Theory lesson: Object-Orienteed Programming (OOP)

16. Theory lesson: Object-Orienteed
Programming (OOP)

Programming paradigms are a way of classifying programming languages by
their features. There are several paradigms (procedural, object oriented, functional,
logic etc.), but the one that we are going to cover in this tutorial is the object-oriented
one.

Object Oriented Programming (OOP) is a programming paradigm based
on an abstract concept of objects. Objects are instances of classes, and they may
contain data in the form of fields or/and code in the form of procedures, also known
as methods. One of the most important features in OOP is that a procedure can
access and even modify the data fields of the object.

Languages that support OOP use (in most cases) inheritance to reuse code
and extend to a more complex implementation. For this, there are created classes,
sub-classes and prototypes. The concepts of OOP are:

• classes: the definitions of the data format and procedures for a given type
of object.

• objects: instances of classes.

A class example in C++ and arduino:

Code 16.1 Example of a class

class Triangle
{
 // Access specifier. Don’t worry about it right now.
 public:

 // Data Members
 int id;
 float edge1;
 float edge2;
 float edge3;
};

This creates a Triangle class that has the attributes of an id, edge1, edge2,
edge3. The ‘edge’ attributes represent the length of the edges. The id is an integer,
and the edges are float(real numbers).

Great! Now we can create objects using this “pattern”.

To create an object of this type we can declare it like any other data types:

Triangle firstTriangle;

92
www.plusivo.com Plusivo – ESP8266 Guide

To change an attribute we can access it using the ‘.’ (dot) operator:

firstTriangle.id = 1234;

Now the id attribute of the firstTriangle object has the value 1234.

A class can also contain procedures or methods. They are called like this
because there can be more that one way to do what you intend in the program, but
you use the one that is appropriate for the purpose of your program.

As an example, to calculate the semi-perimeter of a triangle we can add all
the edges together and divide them by two, or divide every edge by two and then add
them together:

Code 16.2 Calculate the semi-perimeter of a triangle

float getSemiPerimeter()
{
 float semiPerimeter = (this->edge1 + this->edge2 + this->edge3)/2;
 return semiPerimeter;
}

The this-> pointer accesses the fields of the object for which the method was
called. To call any of these methods we use the following line of code:

firstTriangle.getSemiPerimeter();

We can translate it like this: for the firstTriangle object do the
getSemiPerimeter() method . But as this method returns the ‘semiPerimeter’ as a
float we should store it in a variable like so:

float semiPerimeter = firstTringle.getSemiPerimeter();

The code for a full program in C++ that prints to the CLI (command line
interface) the semi-perimeter of a triangle should look like this:

93
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.3 The full C++ program

#include <iostream>
using namespace std;

class Triangle
{
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 float getSemiPerimeter()
 {
 float semiPerimeter = this->edge1/2 + this->edge2/2 + this->edge3/2;
 return semiPerimeter;
 }
};

int main()
{
 Triangle firstTriangle;

 firstTriangle.id = 1234;
 firstTriangle.edge1 = 5;
 firstTriangle.edge2 = 4;
 firstTriangle.edge3 = 2;
 float semiPerimeter = firstTriangle.getSemiPerimeter();

 cout << firstTriangle.id << " triangle has a semiperimeter of " <<
semiPerimeter;
 return 0;
}

You can run this program using an online service, for example:

http://cpp.sh/

When we created the firstTriangle object earlier we declared it like any
other data type, but ‘in the back’ the compiler calls the default constructor in this
case, which creates the instance.

C++ constructors
A constructor is a special type of member function that initialises an object

automatically when it’s called.

NOTE! A constructor is declared in the same class as the object that needs
to be created.

94
www.plusivo.com Plusivo – ESP8266 Guide

http://cpp.sh/

The default constructor is the constructor that takes no arguments (has no
parameters). It does not need to be declared first. Here it how it looks like:

Triangle (){ }

And here is how it can be declared in the class:

Code 16.4 Declare a constructor in a class

class Triangle
{
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 Triangle() { }
};

You can change this constructor for your purposes. For example:

Code 16.5 Constructor in a class

class Triangle {
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 Triangle()
 {
 edge1 = -1;
 edge2 = -1;
 edge3 = -1;
 }
};

This constructor initializes the edge lengths of a newly created triangle to -1
to show that a true length has not been given (lengths can’t be lower than 0
physically). Now if you declare a new object of the Triangle type it will
automatically have those edge values because that constructor will be called.

Parameterized constructors
As said earlier a constructor is a special type of method function, so it can get

arguments or parameters when it’s called. In general these arguments help initialise

95
www.plusivo.com Plusivo – ESP8266 Guide

an object. For example in our case we can set all the edges and the id of the triangle.

Code 16.6 Parameterized constructors

Triangle (int id, float edge1, float edge2, float edge3)
{
 this->id = id;
 this->edge1 = edge1;
 this->edge2 = edge2;
 this->edge3 = edge3;
}

You can call this constructor using:

Triangle secondTriangle(3, 4, 5, 6);

This will create an object of the Triangle class with the given parameters.
NOTE! If you create a constructor with parameters, and then want to use the default
constructor, you need to re-declare it in the class body.

Code 16.7 Default constructor and constructor with parameters

class Triangle
{
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 //we need to re-declare the default constructor if we want to use it
 //it’s good to declare it anyway
 Triangle (){ }

 //this is the parameterized constructor
 Triangle (int id, float edge1, float edge2, float edge3)
 {
 this->id = id;
 this->edge1 = edge1;
 this->edge2 = edge2;
 this->edge3 = edge3;
 }
};

C++ destructors
As said earlier, a constructor is a special type of member function that

initialises an object automatically when it’s called. A destructor, also a member
function, as opposed to the constructor is used to deallocate the memory used when
creating the objects. A destructor is automatically called when that object becomes

96
www.plusivo.com Plusivo – ESP8266 Guide

out of scope or it is explicitly deleted. It has the same name as the class prefixed by a
‘~’(tilde). The destructor for the Triangle class looks like this:

~Triangle () { }

A destructor takes no arguments and has no return type. If there are no user-
defined destructors, and one is needed, the compiler implicitly declares a destructor.

You can use the destructor to show when an object is deleted. In the next
example we print to the command line interface(CLI) that the destructor has been
called.

~Triangle ()
{
 cout<<”Destructor has been called”;
}

Inheritance
In OOP inheritance is the mechanism of basing an object or a class upon

another object or class. In classic OOP languages an object created from a subclass
acquire all the properties and behaviors from the parent object (with a few exceptions
that are logical).

Let’s say we have the equilateralTriange subclass which extends the
Triangle class. We declare a subclass like so in C++:

class equilateralTriangle: public Triangle { };

But there would be no point in having an empty class, so as an example we
can put a method that returns the triangle area, as for an equilateral triangle we can
calculate it with the formula:

A=
l2×√3

4

As the formula has a square root in it, we need to import the ‘math.h’ library
so we can use the ‘sqrt()’ function. So, the subclass should look like this:

97
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.8 Subclass

class equilateralTriangle: public Triangle
{
 public:

 float getArea()
 {
 return (this->edge1 * this->edge1 * sqrt(3)) / 4;
 }

 equilateralTriangle () { }
};

Now you can create objects that are of the equilateralTriangle type which
have all the data fields in the Triangle class as the equilateralTriangle class extends
(inherits) the Triangle class.

This is an example of how to use the subclass in a program.

98
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.9 Program with subclasses
#include <iostream>
#include <math.h>

using namespace std;

class Triangle
{
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 float getSemiPerimeter()
 {
 float area = this->edge1/3 + this->edge2/3 + this->edge3/3;
 return area;
 }

 Triangle () { }
};

class equilateralTriangle: public Triangle
{
 public:

 float getArea()
 {
 return (this->edge1 * this->edge1 * sqrt(3)) / 4;
 }

 equilateralTriangle () { }
};

int main()
{
 equilateralTriangle eTriangle;
 eTriangle.id = 1234;
 eTriangle.edge1 = 2;

 float area = eTriangle.getArea();

 cout<<eTriangle.id<<" triangle has an area of "<<area;

 return 0;
}

The subclasses, being classes, can hold data members, not only methods
(functions). Like so:

99
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.10 Subclasses with data members

class equilateralTriangle: public Triangle
{
 public:

 float area;

 float getArea()
 {
 return this->area;
 }

 equilateralTriangle () { }
};

We can set it from another function, although it is better to have methods in
the class to do so, or to use the constructor to set the area.

Code 16.11 Subclass

class equilateralTriangle: public Triangle
{
 public:

 float area;

 float getArea()
 {
 return this->area;
 }

 equilateralTriangle(int edge)
 {
 this->edge1 = this->edge2 = this->edge3 = edge;
 this->area = (this->edge1 * this->edge1 * sqrt(3)) / 4;
 }

 equilateralTriangle () { }
};

This class example has a setArea(); method which sets the area of the object
that the method is called for.

100
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.12 Create new methods in subclass

class equilateralTriangle: public Triangle
{
 public:

 float area;

 void setArea()
 {
 this->area = (this->edge1 * this->edge1 * sqrt(3)) / 4;
 }

 float getArea()
 {
 return this->area;
 }

 equilateralTriangle(int edge)
 {
 this->edge1 = this->edge2 = this->edge3 = edge;
 this->setArea();
 }

 equilateralTriangle () { }
};

This is the way we recommend you to do it, as you can set the area through
your parameterized constructor and if you don’t use the constructor in which you
call the method, you can call it another time.

Overloading functions or methods
Method (function) overloading is a feature that allows a class to have more

than one function with the same name while their arguments are different.

This feature stands on the function signature concept. A function signature is
the name of the function, plus the arguments that are passed to it.

There are 3 ways to overload a method (let’s suppose we have a function
myFunction that does something):

• by numbers of parameters:

myFunction(int, int);
myFunction(int, int, int);

If we call myFunction with two integers as parameters, the program will use
the first function definition. If we call myFunction with three integers as parameters
the program will use the second function definition.

101
www.plusivo.com Plusivo – ESP8266 Guide

• by the data type of the parameters:

myFunction(int, int);
myFunction(float, int);

If we call myFunction with two integers as parameter, the program will use
the first function definition. If we call myFunction with a float parameter and then
an integer the program will use the second function definition.

• by the order of the parameters data type:

myFunction(int, float);
myFunction(float, int);

If we call myFunction with an integer and then a float the program will use
the first function definition. If we call myFunction with a float parameter and then
an integer the program will use the second function definition.

Note! To overload functions you only need one of the ways from the above,
but, also you can use combinations of the three.

Overriding functions or methods
Method (function) overriding in OOP is a language feature that allows a

subclass to have it’s own implementation of a function that is also implemented in a
superclass. This is used for more efficient approaches in processing tasks that may be
easier to compute in a special way due to subclasses objects properties.

So, in our examples we can conclude that in a triangle to calculate the semi-
perimeter, we add all the edges together and divide by two, while to calculate the
semi-perimeter of an equilateral triangle we can do it like this or, easier, multiply one
edge by three and divide the result by two.

102
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.13 Overriding
class Triangle
{
 public:

 int id;
 float edge1;
 float edge2;
 float edge3;

 float getSemiPerimeter()
 {
 float semiPerimeter = this->edge1/2 + this->edge2/2 + this->edge3/2;
 return semiPerimeter;
 }

 Triangle () { }
};

class equilateralTriangle: public Triangle
{
 public:

 float area;

 float getSemiPerimeter()
 {
 return this->edge1 * 3 / 2;
 }

 void setArea()
 {
 this->area = (this->edge1 * this->edge1 * sqrt(3)) / 4;
 }

 float getArea()
 {
 return this->area;
 }

 equilateralTriangle(int edge)
 {
 this->edge1 = this->edge2 = this->edge3 = edge;
 this->setArea();
 }

 equilateralTriangle () { }
};

So, if you call the getSemiPerimeter() method on a Triangle object the
program will call the function implemented in the Triangle class, while if you call
the getSemiPerimeter() method on an equilateralTriangle object, the program
will call the getSemiPerimeter() method implemented in the equilateralObject
class.

firstTriangle.getSemiPerimeter();
VS.

103
www.plusivo.com Plusivo – ESP8266 Guide

eTriangle.getSemiPerimeter();

Access specifiers
Access specifiers (or access modifiers) are keywords that, in OOP languages

set the accesibility of classes, methods or other members of objects. These keywords
are used for data encapsulation.

Data encapsulation refers to the restricting of access to the objects, and
objects components, as well as method function of thee classes.

So, as a conclusion, we use the access specifiers for security purposes, as well
as a better data handling.

In C++ there are three access specifiers:

• public: the members that are declared as public are accessible from
anywhere outside the class through an object of the class.

• protected: the members that are declared as protected are accessible from
outside the class only if the class from which they are used is a subclass.

• private: the members that are declared as private are only accessible from
the same class.

So, in this C++ program:

104
www.plusivo.com Plusivo – ESP8266 Guide

Code 16.14 Access Specifiers

class Triangle
{
 public:
 int edge1;
 protected:
 int edge2;
 private:
 int edge3;
};

class equilateralTriangle: public Triangle
{
 void setEdges(int edge1, int edge2, int edge3)
 {
 this->edge1 = edge1;//allowed, as edge1 is public
 this->edge2 = edge2;//allowed, as equilateral
 //Triangle extends Triangle, and edge2 is a protected member
 this->edge3 = edge3;//not allowed, as edge3 is a
 //private member and can only be seen from inside the class.
 }
};

int main()
{
 Triangle triangle;

 triangle.edge1 = 10; //allowed, edge1 is a public
 //member and can be accesed outside the class

 triangle.edge2 = 20; //not allowed, edge2 is
 //protected and in main() function we are not in the class or
 //subclass

 triangle.edge3 = 30; //not allowed, edge2 is private
 //and in the main() function we are not in the same class as
 //the object
}

105
www.plusivo.com Plusivo – ESP8266 Guide

 17. Lesson 13: DHT11

17. Lesson 13: DHT11

17.1 Overview
In this lesson you will learn how to use a DHT11 Temperature and Humidity

Sensor to check the temperature and humidity in a room.

17.2 Components required
• Development board;

• Micro USB – Type A USB cable;

• DHT11 Humidity and Temperature sensor;

• Breadboard 830p;

• 1 x 5000 Ω resistor;

• 4 x male-to-male jumper wires;

17.3 Component Introduction
DHT11
DHT11 features a temperature and humidity sensor with a calibrated digital

signal output. The DHT11 detects water vapor by measuring the electrical resistance
between two electrods.

There are two types of a DHT11 sensor that you may come across. One with
three pins and a 10k resistor included, or the one included in this kit that does not
have a pull up resistor inside it and has 4 pins.

The humidity sensing component is a moisture holding substrate with
electrodes applied to the surface. When water vapor is absorbed by the substrate,
ions are released by the substrate which increases the conductivity between the
electrodes. The change in resistance between the two electrodes is proportional to the

106
www.plusivo.com Plusivo – ESP8266 Guide

 17. Lesson 13: DHT11

relative humidity.

Here is a graph to show you what this means:

To read the temperature the sensor uses a thermistor. A thermistor is a doped
semiconductor. Semiconductors resistance drops with a rise in temperature as
opposed to conductors (whose resistance rises with a rise in temperature).

So basically the DHT11, to read the temperature, reads the resistance of the
thermistor. The steeper slope at lower temperatures of the thermistor means that you
can calculate the resistance with better accuracy and hence the temperature will be
more accurate.

17.4 Connections
Below, you can find the schematic:

107
www.plusivo.com Plusivo – ESP8266 Guide

 17. Lesson 13: DHT11

Below, you can find a visual representation of the connections:

17.5 Code
You can find the code in the folder "Lesson 13: DHT11". Before uploading

the code, make sure to download the SimpleDHT library:

• After opening the code, go to Sketch>Include Library>Manage Libraries…

108
www.plusivo.com Plusivo – ESP8266 Guide

 17. Lesson 13: DHT11

• Now search for SimpleDHT and hit Install.

The code for this lesson is very simple. First, you have to include the

109
www.plusivo.com Plusivo – ESP8266 Guide

 17. Lesson 13: DHT11

previously installed library, then declare the pin used by the module and declare an
instance of the SimpleDHT11 library.

Code 17.5.1 Library and declaration

#include <SimpleDHT.h>

//define the digital pin used to connect the module
const int dht_pin = D7;

SimpleDHT11 dht11;

In the setup() we have to start a serial communication to communicate with
the computer. In loop() we have to declare two byte variables to store the values
registered by the module. Using the next command we read the values from the
module. This is the syntax defined in the library, so do not modify it.

dht11.read(dht_pin, &temperature, &humidity, NULL);

Now, all you need to do is print the values in the Serial Monitor and wait 2 s
before next read.

Code 17.5.2 The setup() and loop() functions

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);
}

void loop()
{
 //declare two byte variables for temperature and humidity
 byte temperature = 0;
 byte humidity = 0;

 //read the values
 dht11.read(dht_pin, &temperature, &humidity, NULL);

 //display the values in Serial Monitor
 Serial.print("Temperature: ");
 Serial.print(temperature);
 Serial.println(" *C");
 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.println(" H");
 Serial.println();

 //wait 2 s
 delay(2000);
}

110
www.plusivo.com Plusivo – ESP8266 Guide

 18. Lesson 14: Potentiometer and Servo Motor

18. Lesson 14: Potentiometer and Servo Motor

18.1 Overview
In this lesson you are going to learn how to use a potentiometer to control a

servo.

18.2 Components required
• Development board;

• Micro USB – Type A USB cable;

• 10k ohms Potentiometer;

• Servo SG90;

• 9 x male-to-male jumper wires;

• Breadboard power supply;

• Breadboard 830p;

• 9 V battery;

• Cable 9 V battery to DC jack.

18.3 Components introduction
 Potentiometer

In the past lessons, you learned what a resistor is. A potentiometer is pretty
similar to a resistor, the main difference is that the resistor has a fixed resistance,
whereas a potentiometer can change its resistance (it is a variable resistor).

Below, you can see how a generic potentiometer looks like.

111
www.plusivo.com Plusivo – ESP8266 Guide

 18. Lesson 14: Potentiometer and Servo Motor

How it works:

• the resistance measured between A and C is always 10k ohms, no matter if
you turn the rod or not;

• when you turn the rod clockwise, the resistance between A and B increases
(from 0 to 10k) and the resistance between B and C decreases (from 10k to 0).

• when you turn the rod counter clockwise, the resistance between A and B
decreases (from 10k to 0) and the resistance between B and C increases (from
0 to 10k).

Servomotor
A servomotor is an active component that is able of turning its arm precisely.

The servomotor included in the kit is able to turn from 0 degrees to 180 degrees. In
order to control its movement, you have to send it a PWM signal. However, you do
not have to worry as there is a library built in the Arduino IDE that is used to control
servos.

18.4 Connections
Below, you can find the schematic:

Below, you can find the visual representation:

112
www.plusivo.com Plusivo – ESP8266 Guide

 18. Lesson 14: Potentiometer and Servo Motor

18.5 Code
In this code you will see how to use an analog pin. In contrast to a digital pin,

an analog one is able to read multiple values (not only 0 and 1 as a digital one). It is
able to read between 0 and 1024, as there is a 10 bit converter. This value represents a
voltage between 0 and 3.3 V, as the board is operating at 3.3 V. The development
board only has one analog pin and it is marked as A0. You can find the code in the
folder called "Lesson 12: Potentiometer and Servo Motor" .

The code starts by including the library used for the Servo Motor, which is
Servo.h, then we will declare an object of this class named servo.

Code 18.5.1 The library used to control the Servo Motor

//the library "Servo.h" is used to control a servo motor using
//PWM technique
#include <Servo.h>

//declare a new object called servo
Servo servo;

In the setup() function we will start a serial communication with the
computer and then use the instruction servo.attach() to attach the servo to digital
pin D1.

113
www.plusivo.com Plusivo – ESP8266 Guide

 18. Lesson 14: Potentiometer and Servo Motor

Code 18.5.2 The setup() function

void setup()
{
 //start the serial communication with the computer at 115200 bits/s
 Serial.begin(115200);

 //attach the servo on digital pin D1
 servo.attach(D1);
}

In the loop() function we will read the value from the analog pin using
analogRead(), which is the position of the potentiometer, then remap this value,
which is between 0 and 1024, to the 0-180 interval so that we can get the angle that
the potentiometer is currently at. A new function used is the map function, which is
used to remap a number from one range to another.

This method requires 5 parameters: map(value, fromLOW, fromHIGH,
toLOW, toHIGH) :

• value -> the number to map

• fromLOW -> the lower bound of the value's current range

• fromHIGH -> the upper bound of the value's current range

• toLOW -> the lower bound of the value's target range

• toHIGH -> the upper bound of the value's target range

The next instruction is to write the value to the servo using
servo.write(value). Now, we can also print in Serial Monitor the angle of the
potentiometer (which is also the angle of the Servo Motor).

114
www.plusivo.com Plusivo – ESP8266 Guide

 18. Lesson 14: Potentiometer and Servo Motor

Code 18.5.3 The loop() function

void loop()
{
 //read the value on pin A0
 //the pin is able to read a value between 0 and 1024 corresponding
 //to 0 V and 3.3 V
 int value = analogRead(A0);

 //remap the analog value to a new range (from 0 to 180) as the
 //servo can turn max 180 degrees.
 value = map(value, 0, 1024, 0, 180);

 //turn the servo motor accordingly to the angle stored in value
 servo.write(value);

 //print in Serial Monitor the current angle of the servo
 Serial.print("Angle: ");
 Serial.println(value);

 //pause the code for 50ms;
 delay(50);
}

115
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

19. Lesson 15: Wireless Connectivity

19.1 Overview
In this lesson you will learn how to connect the development board to a

network and how to host a simple WEB page.

19.2 Components required
• Development board;

• Micro USB – Type A USB cable;

19.3 HTTP
HTTP (Hypertext Transfer Protocol) is an application protocol for encoding

and transporting data between a client and a web server. It is primarily used on the
World Wide Web. An HTTP client (usually a web browser) makes a request and the
server issues a response that includes not only the requested content, but also status
information about the request.

A basic HTTP request involves the following steps:

• a connection to the HTTP server is opened

• a request is sent to the server

• server is processing the request

• the server sends back a response

• the connection is closed

There are three main HTTP types of requests: GET, POST, HEAD.

GET:

The GET method requests a representation of the specified resource, and the
requests using GET should only retrieve data.

HEAD:

The HEAD method asks for a response identical to that of a GET request,
but without the response body.

POST:

The POST method requests that the server accepts the entity enclosed in the
request as a new subordinate of the web resource identified by the URI.

116
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

19.4 Code
The main advantage of this development board is that it can connect to a

WiFi network and host a small website. The code for this lesson can be found in the
folder "Lesson 15: Wireless Connectivity".

In this lesson, you will connect the board to a WiFi network. You have to
know the name of the network (SSID = Service Set Identifier) and its password.

The code starts by including the library ESP8266WebServer.h. This library
also has included the ESP8266WiFi.h library necessary for the WiFi part of the code.
The next step is to declare two const char* variables, ssid and password, used for
storing the credentials of the network.

Next, you have to set up the server side. First, you have to create a webserver
object that listens for HTTP requests on a specified port. The default HTTP port is 80
but you can change it however you want. Make sure it is not used by another service.

If you use a port different than 80, you need to be sure you access it correctly
from the browser. For example, if the IP is 100.32.12.39 and the port is 2093, you
have to access the following address: "100.32.12.39:2093". In case you changed the
port, it is recommended to use one greater than 1023.

Here are some ports reserved by other services:

1 – TCP Port Service Multiplexer (TCPMUX) 118 – SQL Services

5 – Remote Job Entry (RJE) 119 – Newsgroup (NNTP)

7 - ECHO 137 – NetBIOS Name Service

18 – Message Send Protocol (MSP) 139 – NetBIOS Datagram Service

20 – FTP - Data 143 – Interim Mail Access Protocol (IMAP)

21 – FTP - Control 150 – NetBIOS Session Service

22 – SSH Remote Login Protocol 156 – SQL Server

23 - Telnet 161 - SNMP

25 – Simple Mail Transfer Protocol (SMTP) 179 – Border Gateway Protocol (BGP)

29 – MSG ICP 190 – Gateway Access Control Protocol (GACP)

37 - Time 194 – Internet Relay Chat (IRC)

42 – Host Name Server (Nameserv) 197 – Directory Location Service (DLS)

43 - Whols 389 – Lightweight Directory Access Protocol (LDAP)

49 – Login Host Protocol 396 – Novell Netware over IP

53 – Domain Name System (DNS) 443 - HTTPS

69 – Trivial File Transfer Protocol (TFTP) 444 – Simple Network Paging Protocol (SNPP)

70 – Gopher Services 445 – Microsoft-DS

79 - Finger 458 – Apple QuickTime

117
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

80 - HTTP 546 – DHCP Client

103 – X.400 Standard 547 – DHCP Server

108 – SNA Gateway Access Server 563 - SNEWS

109 - POP2 569 - MSN

110 - POP3 1080 - Socks

115 – Simple File Transfer Protocol (SFTP)

Code 19.4.1 Library and declaration

#include <ESP8266WebServer.h>

//here you have to insert your wireless network name and password
const char* ssid = "ssid";
const char* password = "password";

//create a new object ESP8266WebServer
//the parameter "80" represents the port that the board listens to.
//if you use a port different than 80, you need to be sure you access it
//correctly from the browser.
//For example:
//if the ip is 100.32.12.39 and the port is 2093, you have to access
//the following address: "100.32.12.39:2093"
ESP8266WebServer server(80);

Next, we will have a function that handles the server side. Firstly, we have to
organize the content of the website. This can be done using method
server.on(location, content);.

• The default location can be "/", but you can change it to whatever you want.

• The content parameter is a function called when you access the specific
location, declared earlier.

Then, we need to start the server and listening for HTTP requests using
server.begin(). Also we will print a message in Serial Monitor when the server has
started.

118
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

Code 19.4.2 The function for set up the server

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);

 //start the server
 server.begin();

 //print in serial manager that the HTTP server is started
 Serial.println("HTTP server started");
}

Next step is to create the functions used as content parameters. Inside the
new functions, you have to make sure that you use the method server.send(). Method
server.send() requires three parameters in order to work:

• replyCode refers to the HTTP code sent together with the message.
However, the user will not be able to see this HTTP code.

• contentType is a String variable that defines the type of the message sent
back to the user

• message parameter is the actual text sent to the user. Depending on the
content of the message, it might contain HTML tags or not. You will learn
how to display a HTML formatted page in a later lesson.

Here are some common codes:

HTTP code Meaning

200 OK

400 Bad Request

403 Forbidden

404 Not Found

500 Internal Server Error

Here are some content types:

119
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

Content Type Meaning

text/plain The message is not interpreted and formatted by the
browser. It is used just to display a text.

text/html It is pretty similar to "text/plain" but you can format the
text using HTML.

Code 19.4.3 The content parameter

void htmlIndex()
{
 //You can find on the internet a list with all HTML codes but here
 //are the most used ones:
 //200 -> OK
 //400 -> Bad Request
 //403 -> Forbidden
 //404 -> Not found
 //500 -> Internal Server Error
 int replyCode = 200;

 //contentType refers to the type of the mssage sent to the user
 //The most used ones are:
 //text/plain -> used just for text, without using HTML
 //text/html -> used to create a page using HTML

 String contentType = "text/plain";

 //the mssage variable is used to store the message sent to the
 //user
 String message = "Hello world!";

 //send the message to the user
 server.send(replyCode, contentType, message);
}

We also need a function for connecting to a wireless network. In the
connectToWiFi() function we will start by displaying a message in Serial Monitor.
Then we are going to set the WiFi mode as WiFi_STA, meaning that the board will
act as a station, and connect to the WiFi network using the variables declared at the
beginning of the code and the command WiFi.begin(ssid, password). Using a while
loop we are going to wait for the connection to be made. In the end of the function
we will display in Serial Monitor a message that the board is connected to the
specifiend network and also we will display the IP address of the board. This IP will
be used to connect to the server from a browser.

120
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

Code 19.4.4 Connecting to a wireless network

void connectToWiFi()
{
 Serial.println("Connecting to the WiFi");
 //set the WiFi mode to WiFi_STA.
 //the WiFi_STA means that the board will act as a station,
 //similar to a smartphone or laptop
 WiFi.mode(WIFI_STA);

 //connect to the WiFi network using the ssid and password strings
 WiFi.begin(ssid, password);

 //below we check the status of the WiFi and wait until the
 //board is connected to the network
 Serial.println("Waiting for connection");
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }

 //when the board is successfully connected to the network,
 //display the IP assigned to it in the Serial Monitor.
 Serial.println("");
 Serial.print("Connected to ");
 Serial.println(ssid);
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());
}

In the setup() function, we will start a serial communication with the
computer and call the two functions created for connecting to WiFi and setup the
server: connectToWiFi() and setupServer().

Code 19.4.5 The setup() function

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to wifi
 //and setup the server
 connectToWiFi();
 setupServer();
}

Finally we have the loop() function, which consists of a single instruction
used to check if there is somebody trying to access the website.

121
www.plusivo.com Plusivo – ESP8266 Guide

 19. Lesson 15: Wireless Connectivity

Code 19.4.6 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

122
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

20. Theory lesson: Web pages

20.1 HTML
HTML (Hyper Text Markup Language) is the standard markup language for

creating Web pages and Web applications. A markup language is a computer
language that uses tags to define elements inside a text file.

In HTML, as in many others markup languages, the tags have the next
structure:

<tag>

An HTML element usually consists of a start tag and end tag, and the
content inserted between them:

<tag> Text </tag>

To explain the standard structure of a HTML page, let's do the standard
Hello world! page:

Code 20.1.1 First HTML page

<html>
 <head>
 <title>Hello title</title>
 </head>

 <body>
 <p>Hello world!</p>
 </body>
</html>

Elements explanation:

• <html> is the root element of an HTML page

• <head> contains meta information about the document

• <title> element specifies a title for the document

• <body> element contains the visible page content

• <p> defines a paragraph

Now, open a text editor and insert the text above.

123
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Save the file to a preferred location with the extension .html.

124
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

You can open the file with any browser, and you should see something
similar with:

125
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Congratulations! You have just created a HTML file. Also, you can find this
code in the folder HTML > Hello.html.

To define a section or a division in a HTML file, we use <div> tag. Also <div>
element is often used as a container for other HTML elements to style them with CSS
or to perform certain tasks with JavaScript. Let's create a HTML file with the <div>
tag.

Styles in HTML describe how a document will be presented on a browser.
There are 3 ways of implementing style in HTML: Inline Style, Embedded Style
and External Style Sheet. In the Inline Style method, the style attribute is used
inside the HTML start tag and has the following syntax: <tagname
style="property:value;">. The property is a CSS property. The value is a CSS value.

126
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.1.2 HTML page using <div> tag and styling

<html>
 <head>
 <title>Div</title>

 </head>
 <body>
 <p>Below you can see the blocks created using div</p>

 <div style="background-color:red">
 <h3>This is heading in a div</h3>
 </div>
 <div style="background-color:gray">
 <i>Italic text</i>
 </div>
 <div style="color:orange">
 <p>New paragraph</p>
 </div>
 </body>
</html>

Open the file with any browser and you should see something like this:

CSS has several different units for expressing a length. The length is
composed of a number followed by a length unit, such as 20px, 3em, etc. There are
two types of length units: absolute and relative.

The absolute length units are fixed and a length expressed in any of these will
appear at exactly that size:

cm centimeters

mm milimeters

in inches (1in = 96px = 2.54 cm)

px pixels (1px = 1/96th of 1in)

pt points (1pt = 1/72 of 1in)

pc picas (1pc = 12pt)

Relative length units specify a length relative to another length property.
127

www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

em Relative to the font-size of the element (2em means 2 times
the size of the current font)

ex Relative to the x-height of the current font (rarely used)

ch Relative to width of the "0" (zero)

rem Relative to font-size of the root element

vw Relative to 1% of the width of the viewport

vh Relative to 1% of the height of the viewport

vmin Relative to 1% of viewport's* smaller dimension

vmax Relative to 1% of viewport's* larger dimension

% Relative to the parent element

Below, you can find an example of a HTML page in which we used both,
absolute length and relative length. Resize the browser to see the effects:

Code 20.1.3 CSS units

<html>
 <head>
 <title> CSS units</title>
 </head>
 <body>
 <p>Font-size using vh:</p>
 <div style="font-size: 20vh">Hello</div>
 <p>Resize the height of the browser window to see how the font-size
changes.</p>

 <p>Font-size using px:</p>
 <div style="font-size: 70px">Hello world!</div>

 <p>Font-size using em:</p>
 <div style="font-size: 30px">
 <div style="font-size: 3em">Hello again</div>
 </div>
 </body>
</html>

Open the file with any browser and you should see something like this:

128
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

The <button> tag defines a clickable button. Inside a button you can put text
or images. Make sure to specify the type attribute for a <button> element, because
different browsers use different default types for the <button> element. Below you
can find an example:

Code 20.1.4 HTML <button> tag

<html>
 <head>
 <title>Button</title>
 </head>

 <body>
 <h2>Button element</h2>
 <button type="button">I am a button</button>
 </body>

</html>

Open the file with any browser and you should see something like this:

129
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Next, we will discuss about <input> element. Firstly, <form> element
represents a document that contains interactive controls for submitting informations
to a web server. The HTML <input> element is used to create interactive controls for
web-based forms in order to accept data from the user. An input field can vary in
many ways, depending on the type attribute. There are many types, for example:
button, checkbox, radio, range, submit, text, time etc.

In our project, we will use the range type to define a slider. Also we can
define a button using <input> element. In the following example we will use button
and range types.

Code 20.1.5 The <input> element

<html>
 <head>
 <title>Input element</title>
 </head>
 <body>
 <input type="text" value="Here is some text">

 Button:

 <input type="button" value="Here is a button">

 Slider:

 <input type="range" name="position" min="0" max="100">

 <input type="submit">
 </body>
</html>

And the page should look like this:

130
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

The class attribute specifies one or more classes for an element. class in
HTML is reference to the CSS, but it can also be used by JavaScript. Syntax: <element
class="name">. Note that the class name is case sensitive! You can find below an
example in which we used classes.

Code 20.1.6 CSS classes

<html>
 <head>
 <style>
 .class1 {
 background-color: black;
 color: white;
 padding: 10px;
 }
 .class2 {
 background-color: skyblue;
 color: red;
 }
 </style>
 <title>Classes</title>
 </head>
 <body>
 <h1>The class Attribute</h1>

 <div class="class1">Here we used the first class</div>

 <div class="class2">Here we used the second class</div>

 </body>
</html>

And the page should look like this:

131
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

In CSS, selectors are patterns used to select the element(s) you want to style.
Examples of CSS selectors: .class (used above), #id, :hover, etc. The :hover selector
is used to select elements when you move the mouse over them. Below, you can find
an example with :hover.

Code 20.1.7 CSS selectors

<html>
 <head>
 <title>Hover</title>
 <style>
 h1:hover {
 color: skyblue;
 }
 </style>
 </head>
 <body>
 <h1>Move the mouse over this</h1>

 <p>Note: The :hover selector style links on mouse-over.</p>

 </body>
</html>

And the page should look like this:

132
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Further information can be found by accessing the links attached:

https://www.w3schools.com/html/default.asp

https://developer.mozilla.org/en-US/docs/Learn/HTML

https://www.w3schools.com/css/default.asp

All the HTML files can be found in the folder called HTML.

20.2 JavaScript Object Notation
JavaScript Object Notation (JSON) is a syntax for storing and exchanging

data. While exchanging information between server and a web page, the data can
only be text.

Below, there is an example how a JSON looks like:

{
 "id": 10 ,
 "company":"Plusivo"
}

This is an example of a JSON object. JSON objects are surrounded by curly
braces {} and are written in key/value pairs. key must be strings and value must be
a data type (string, number, object, array, boolean or null).

In the example above, there are 2 fields (keys) called "id" and "company".
These two fields are separated by a comma. "id" stores an integer and "company"
stores a string. Please note that an integer doesn't need to be in quotes, whereas a
string has to be in quotes.

Let's make an example with JSON objects:

133
www.plusivo.com Plusivo – ESP8266 Guide

https://www.w3schools.com/css/default.asp
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://www.w3schools.com/html/default.asp

 20. Theory lesson: Web pages

Code 20.2.1 JSON objects
<html>
 <head>
 <title>JSON object</title>
 </head>
 <body>
 <p id="type"></p>
 <p id="colour"></p>

 <script>

 var object =
 {
 "animal": "cat",
 "colour": "white",
 "eyes": "blue",
 "age": 1
 };

 document.getElementById("type").innerHTML = "animal: " + object.animal;

 document.getElementById("colour").innerHTML = "colour: " + object.colour;

 document.writeln("eyes: " + object.eyes + "
" + "
");

 document.writeln("age: " + object.age);

 </script>
 </body>
</html>

And the page should look like this:

innerHTML is used to change the content of the page without refreshing.
Along getElementById() is used in the JavaScript code to refer to an HTML element
and change its contents.

document.writeln() writes a string of text to a document.

Below you can find another example using
document.getElementByID().innerHTML in which we are using a button, and
when the button is pressed, the text will change.

134
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.2.2 Example with innerHTML

<html>
 <body>

 <p id="change">Click the button.</p>

 <button onclick="magic_function()">Try it</button>

 <script>
 function magic_function() {
 document.getElementById("change").innerHTML = "Magic";
 }
 </script>

 </body>
</html>

And the page should look like this:

You can find more details about JSON by accessing the links below:

https://www.w3schools.com/js/js_json_intro.asp

https://beginnersbook.com/2015/04/json-tutorial/

https://www.json.org/

https://www.tutorialspoint.com/json/

20.3 jQuery
jQuery is a free, open-source software using the MIT License, fast, easy to

learn and to use, JavaScript library that can be used to simplify animation, HTML
document traversing, event handling and Ajax.

There are several ways to start using jQuery on your web site. We will use it
by including jQuery from Google. So, in the HTML file, in head, we have to include
the script:

135
www.plusivo.com Plusivo – ESP8266 Guide

https://www.tutorialspoint.com/json/
https://www.json.org/
https://beginnersbook.com/2015/04/json-tutorial/
https://www.w3schools.com/js/js_json_intro.asp

 20. Theory lesson: Web pages

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

The basic syntax of jQuery is: $(selector).action().

jQuery selectors allow you to select and manipulate HTML elements. The #id
selector uses the id attribute of an HTML tag to find the specific element and this id
should be unique for each element.

The interaction of the user with the web page is called event. These events
are actions of a user and there are many interactions with the web page, for example:
clicking on elements, move the mouse over elements, typing in textboxes, etc. To tell
the browser what to do when an event triggers, we provide a fuction, known as
event handler. Let's make a simple example to display a message when clicking a
button. Note that this is also a HTML page.

Code 20.3.1 jQuery selectors

<html>
 <head>
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 <title>Button jQuery</title>
 <script>

 $(document).ready(function(){
 $("#my_button").click(function(){
 alert("The button was pressed");
 });
 });

 </script>
 </head>
 <body>
 <button id="my_button" type="button">Button to be pressed</button>
 </body>
</html>

And the page should look like this:

We have to use the .on(events [, selector] [, data], handler) method in
order to bind an event handler function to one or more events, like mousedown,

136
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

touchend, change etc, and attach the handler to the selected elements.

Below is the description of all the parameters used by this method:

• events – events types separated by spaces

• selector – a selector string

• data – data to be passed to the handler in event.data

• handler - a function to execute when the event is triggered, and also
is required

Let's do an example of this method. When you move the mouse over the text,
the colour of the text will stay blue while the mouse stays over the text.

Code 20.3.2 .on() method

<html>
 <head>
 <title>Magic</title>
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 <script>

 $(document).ready(function(){
 $("h1").on("mouseover mouseout", function(){
 $(this).toggleClass("h1-class");
 });
 });
 </script>
 <style>
 .h1-class {
 color: blue;
 }
 </style>
 </head>
 <body>

 <h1>Move the mouse over the text.</h1>

 </body>
</html>

And the page should look like this:

137
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Using $(selector).html(string) we can refer to a HTML element and change
its contents. It is similar with document.getElementByID().innerHTML.

Example:

Code 20.3.3 .html() for changing HTML element content

<html>
 <head>
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 <script>
 $(document).ready(function(){
 $("button").click(function(){
 var x = new Date();

 $("div").html("Date and time: " + x);
 });
 });
 </script>
 </head>
 <body>
 <p>Click the button to change the text.</p>
 <button>Change</button>

 <div>Some text</div>

 </body>
</html>

And the page should look like this:

The ajax() method is used for sending asynchronous HTTP requests to the
server. Working with AJAX, exchanging data with a server is without reloading the
entire page.

There are two most-used methods for loading data from the server: GET and
POST.

GET is used for loading data from the server, and may return cache data.
POST is used for loading data from the server, but never caches data and is used to
send data along with the request.

138
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

The syntax of these two methods are similar:

jQuery.get(url [, data] [, success] [, dataType])

jQuery.post(url [, data] [, success] [, dataType])

And their equivalents are:

For GET:

$.ajax({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

For POST:

$.ajax({
 type: "POST",
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

Parameters:

• url is a string containing the URL to which the request is sent

• data is a string that is sent to the server along the request

• success is a function that is executed if the request succeeds

• dataType is the data type expected from the server

For further details and examples with jQuery, Ajax and the two methods, you
can access the links below:

https://jquery.com/

https://learn.jquery.com/

https://www.w3schools.com/jquery/default.asp

https://www.w3schools.com/jquery/jquery_ajax_get_post.asp

139
www.plusivo.com Plusivo – ESP8266 Guide

https://www.w3schools.com/jquery/jquery_ajax_get_post.asp
https://www.w3schools.com/jquery/default.asp
https://learn.jquery.com/
https://jquery.com/

 20. Theory lesson: Web pages

20.4 Bootstrap
Bootstrap is a free and open-source front-end framework for easy web

development. It is the most popular front-end library and works with HTML, CSS
and JavaScript.

You can download and host Bootstrap yourself, or you can include it from a
CDN, for example:

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap
.min.css"/>

Bootstrap is designed to work with touch devices, so to ensure proper
rendering and touch zooming, add the following <meta> tag:

<meta name="viewport" content="width=device-width, initial-scale=1">

Bootstrap also requires a containing element to wrap site contents, and there
are two container classes:

• .container class provides a responsive fixed width container

• .container-fluid provides a full width container

Below you can find a simple example with a HTML web page using
Bootstrap.

Code 20.4.1 Bootstrap, first example
<html lang="en">
 <head>
 <title>Bootstrap</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>

 <body>

 <div class="container-gluid">
 <h1>Bootstrap page</h1>
 <p>First paragraph</p>
 <p>Second paragraph</p>
 </div>

 </body>
</html>

And the page should look like this:

140
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Bootstrap's grid system is built with flexbox and allows up to 12 columns
across the page. The Bootstrap grid system has five classes:

• .col- (extra small devices)

• .col-sm- (small devices)

• .col-md- (medium devices)

• .col-lg- (large devices)

• .col-xl- (extra large devices)

You can also combine the classes for good compatibility with all types of
devices.

Below you can see an example with one of the classes:

141
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.4.2 Bootstrap grid example
<html lang="en">
 <head>
 <title>Bootstrap</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>
 <body>

 <div class="container-fluid">
 <h1>Hello World!</h1>
 <p>Resize the browser window to see the effect.</p>
 <div class="row">
 <div class="col-sm-2" style="background-color:skyblue;">.col-sm-2</div>
 <div class="col-sm-10" style="background-color:gray;">.col-sm-10</div>
 </div>

 <div class="row">
 <div class="col-sm-4" style="background-color:skyblue;">.col-sm-4</div>
 <div class="col-sm-8" style="background-color:gray;">.col-sm-8</div>
 </div>

 <div class="row">
 <div class="col-sm-6" style="background-color:skyblue;">.col-sm-6</div>
 <div class="col-sm-6" style="background-color:gray;">.col-sm-6</div>
 </div>

 <div class="row">
 <div class="col-sm-8" style="background-color:skyblue;">.col-sm-8</div>
 <div class="col-sm-4" style="background-color:gray;">.col-sm-4</div>
 </div>

 <div class="row">
 <div class="col-sm-10" style="background-color:skyblue;">.col-sm-10</div>
 <div class="col-sm-2" style="background-color:gray;">.col-sm-2</div>
 </div>

 </div>
 </body>
</html>

And the page should look like this:

You can move columns to the right using offset-md-* classes. These classes

142
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

increase the left margin of a column by * columns:

Code 20.4.3 Offseting columns
<html lang="en">
 <head>
 <title>Offsetting columns</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>
 <body>
 <div class="container-fluid">
 <p>Resize the browser window to see the effect.</p>
 <div class="row" style="background-color:skyblue;">
 <div class="col-sm-5 col-md-3" style="background-color:gray">.col-sm-5 .col-
md-3</div>
 <div class="col-sm-7 col-md-9" style="background-color:green">.col-sm-7 .col-
md-9</div>
 </div>

 <div class="row" style="background-color:skyblue;">
 <div class="col-sm-4 offset-sm-1 col-md-2 offset-md-1" style="background-
color:gray">.col-sm-4 .col-md-2</div>
 <div class="col-sm-6 offset-sm-1 col-md-8 offset-md-1" style="background-
color:green">.col-sm-6 .col-md-8</div>
 </div>
 </body>
</html>

And the page should look like this:

Using Bootstrap, any HTML element looks better. Next, let's create a HTML
file using Bootstrap to create different styles of buttons. Also, using the .btn-group
class, we can create a button group.

143
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.4.4 Bootstrap buttons
<html lang="en">
 <head>
 <title>Bootstrap</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>
 <body>

 <div class="container-fluid">
 <h2>Buttons</h2>
 <button type="button" class="btn">Basic</button>
 <button type="button" class="btn btn-primary">Primary</button>
 <button type="button" class="btn btn-secondary">Secondary</button>
 <button type="button" class="btn btn-success">Success</button>
 <button type="button" class="btn btn-info">Info</button>
 <button type="button" class="btn btn-warning">Warning</button>
 <button type="button" class="btn btn-danger">Danger</button>
 <button type="button" class="btn btn-outline-primary">Primary</button>
 <button type="button" class="btn btn-outline-secondary">Secondary</button>

 <div class="btn-group">
 <button type="button" class="btn btn-primary">Button1</button>
 <button type="button" class="btn btn-primary">Button2</button>
 <button type="button" class="btn btn-primary">Button3</button>
 </div>
 </div>

 </body>
</html>

And the page should look like this:

And, also, let's make an example with Bootstrap grid and buttons:

144
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.4.5 Bootstrap grid and buttons
<html>
 <head>
 <title>Bootstrap Grid and Buttons</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>
 <body>
 <div class="container-fluid">
 <div class="row">
 <div class="col-sm-4 text-center">
 <button type="button" class="btn" style="font-size:
9vh">Button1</button>
 </div>
 <div class="col-sm-4 text-center">
 <button type="button" class="btn btn-primary" style="font-size:
9vh">Button2</button>
 </div>
 <div class="col-sm-4 text-center">
 <button type="button" class="btn btn-secondary" style="font-size:
9vh">Button3</button>
 </div>
 </div>

 <div class="row" style="height: 10vh;"> </div>

 <div class="row">
 <div class="col-sm-12 text-center">
 <button type="button" class="btn" style="font-size: 12vh">Button
centered</button>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12 text-center">
 <div class="btn-group">
 <button type="button" class="btn btn-primary" style="font-size:
9vh">Group1</button>
 <button type="button" class="btn btn-primary" style="font-size:
9vh">Group2</button>
 <button type="button" class="btn btn-primary" style="font-size:
9vh">Group3</button>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

And the page should look like this:

145
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

For more information about Bootstrap, click the links below:

https://www.w3schools.com/bootstrap4/default.asp

https://getbootstrap.com/

20.5 Font awesome
Font Awesome is the web's most popular icon set and toolkit. It has many

awesome vector icons and social logos.

You can use Font Awesome by including their CDN in the head of your
HTML file:

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.1.0/css/all.css"/>

Now, let's use a few icons to create a HTML page:

146
www.plusivo.com Plusivo – ESP8266 Guide

https://getbootstrap.com/
https://www.w3schools.com/bootstrap4/default.asp

 20. Theory lesson: Web pages

Code 20.5.1 Font awesome, first example
<html lang="en">
 <head>
 <title>Font Awesome</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.1.0/css/all.css"/>
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 </head>
 <body>
 <div class="container-fluid">
 <div class="row" style="font-size:48px">
 <div class="col-sm-12 text-center" style="color:skyblue">
 <p>Using Font Awesome is "awesome"</p>
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12" style="font-size:38px">
 I am always
 <i class="far fa-smile" style="color:red"></i>
 when I have good
 <i class="fas fa-signal"></i>
 on my
 <i class="fas fa-mobile"></i>,
 and also a full
 <i class="fas fa-battery-full"></i>.
 </div>
 </div>
 </div>
 </body>
</html>

And the page should look like this:

Let's play with another example, also using notions of jQuery. In this
example we will bootstrap, fontawesome and jQuery. Using fontawesome, we will
define a bulb icon and apply to that bulb a specific size. Also, we are using a
bootstrap button with the initial value set to Off. Using JavaScript and jQuery, we
will animate the button and icon, previously defined. The .click(handler) event is
used to bind an event handler to the click JavaScript event. When the button is
clicked, a function, represented by handler, will execute. In that function we will use
a variable clicked which value can be true or false. We defined another two
variables, color and button, that stores the color of the bulb and, respectively, the

147
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

state, On or Off. You can see that we used another jQuery method
.css("propertyname", "value"). This method sets or returns one or more style
properties for the selected elements. Using .val() method we will modify the value of
the button.

Code 20.5.2 Font awesome and jQuery
<html lang="en">
 <head>
 <title>Font Awesome</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.1.0/css/all.css"/>
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 </head>
 <body>
 <div class="container-fluid text-center">
 <div class="row text-center">
 <div class="col-sm-12" style="color:red;font-size:7vh">
 <p>Let's play with a bulb.</p>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12">
 <i id="id_bulb" class="fas fa-lightbulb" style="font-size:25vh"></i>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12" style="font-size:7vh">
 <p>Click the button:</p>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12">
 <input type="button" class="btn btn-primary" id="id_button" value="off" style="font-
size:7vh">
 </div>
 </div>
 </div>

 <script>
 clicked = true;
 $(document).ready(function(){
 $("#id_button").click(function(){
 var color = clicked ? 'orange' : 'black';

 var button = clicked ? 'On' : 'Off';

 $("#id_bulb").css('color', color);
 $("#id_button").val(button);
 clicked = !clicked;
 });
 });
 </script>
 </body>
</html>

And the page should look like this:

148
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

In the example above, we used three variables for storing the last state,
color and value. We will make another example that will do the same things, but
this time we will use css classes to change the color of the bulb, and, based on the
last class used, we will change the color of the bulb and the value of the button. The
.hasClass() method will return true if the class is assigned to the specified element
(in our case, the bulb icon).

In the HTML body, where we defined the icon, we have to set the css_off
class. When the button is clicked, we will check if the class assigned is css_off and
if that is true, we will set the value to On and remove the css_off class using
.removeClass() method and add the new class css_on. If the statement is false,
then we will set the value to Off, remove the css_on class and add css_off class.
The page will look the same, so below is presented only the code.

149
www.plusivo.com Plusivo – ESP8266 Guide

 20. Theory lesson: Web pages

Code 20.5.3 Awesome bulb with css classes
<html lang="en">
 <head>
 <title>Font Awesome</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.1.0/css/all.css"/>
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css"/>
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
 <style>
 .css_on
 {
 color: orange;
 }
 .css_off
 {
 color: black;
 }
 </style>
 </head>
 <body>
 <div class="container-fluid text-center">
 <div class="row text-center">
 <div class="col-sm-12" style="color:red;font-size:7vh">
 <p>Let's play with a bulb.</p>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12">
 <i id="id_bulb" class="fas fa-lightbulb css_off" style="font-size:25vh"></i>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12" style="font-size:7vh">
 <p>Click the button:</p>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12">
 <input type="button" class="btn btn-primary" id="id_button" value="Off" style="font-
size:7vh">
 </div>
 </div>
 </div>

 <script>
 $(document).ready(function(){
 $("#id_button").click(function(){
 var current_state = $("#id_bulb").hasClass("css_off");

 if(current_state == true)
 {
 $("#id_button").val("On");
 $("#id_bulb").removeClass("css_off").addClass("css_on");
 }
 else
 {
 $("#id_button").val("Off");
 $("#id_bulb").removeClass("css_on").addClass("css_off");
 }
 });
 });
 </script>
 </body>
</html>

You can check their website for many cool icons, and learn how you can
integrate all that icons in your code to make your page look astonishing.

https://fontawesome.com/

150
www.plusivo.com Plusivo – ESP8266 Guide

 21. Lesson 16: Control an LED from web

21. Lesson 16: Control an LED from web

21.1 Overview
In this lesson you will learn how to turn on or off an LED from a browser.

This lesson combines two separate lessons: Blink an LED and Wireless
Connectivity.

21.2 Components required
• Development board;

• 1 x LED;

• 1 x 150Ω resistor ;

• Breadboard 830p;

• 2 x male-to-male jumper wire;

• Micro USB – Type A USB Cable;

21.3 Connections
Below is the schematic:

Next, you can see a visual representation of the project:

151
www.plusivo.com Plusivo – ESP8266 Guide

 21. Lesson 16: Control an LED from web

21.4 Code
The code for this lesson combines multiple lessons: Blink an LED, Wireless

Connectivity and Theory lesson, and can be found in the folder "Lesson 16:
Control an LED from web".

The HTML page is identical with the one presented at the end of the previous
lesson where we used an icon of a bulb and a button, and, when the button was
pressed, the value of the button changed, and so the color of the bulb. The head and
the body of the HTML page will remain unchanged, only the JavaScript section is
modified.

Before talking about the JavaScript side, let's discuss the server and wireless
connectivity side. At the beginning of the code, we will include the
ESP8266WebServer.h library for the web server, declare two variables, ssid and
password, that will store the credentials for the wireless network, declare an
instance of the ESP8266WebServer class, declare the pin used by the LED and a
string variable that will store later the state of the button (On or Off). We will use the
same connectToWiFi() function as in the Wireless Connectivity lesson.

The setupServer() function contains two server.on(location, content)
instructions used to tell to the server what URIs it needs to respond to. The first one,
server.on("/", htmlIndex), is used to setup the main page and the second one,
server.on("/led", led), is used to setup the page for LED.

152
www.plusivo.com Plusivo – ESP8266 Guide

 21. Lesson 16: Control an LED from web

Code 21.4.1 The setupServer() function

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);
 server.on("/led", led);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

The HTML page is stored as a string variable. The htmlIndex() function
contains only one instruction used to send the page (the string) to the user.

Code 21.4.2 The htmlIndex() function

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

Another function created that will execute when sending a message from the
web page, using JavaScript and jQuery, is led(). This function is created for
controlling the LED. A new method that appears in the code is "server.arg(name)". It
is used to identify an argument called name and returns the value (as a String) of the
argument.

Example:

$.get('/', {value: val});

In the above example, the value represents the name of the argument and val
represents the value of the argument value.

Our storage string variable will contain the current state of the button (On
or Off) and using an if statement we will decide if the state is On, then we will turn
On the LED, otherwise the LED will be turned Off. At the end of this function we
will send an OK message using server.send(200, "text/html", "ok").

153
www.plusivo.com Plusivo – ESP8266 Guide

 21. Lesson 16: Control an LED from web

Code 21.4.3 The function for controlling the LED

void led()
{
 //server.arg(name) returns the value (as string) of the argument "name"
 storage = server.arg("state");

 //if the value returned is "On", we will turn On the LED
 //else, we will turn Off the LED
 if(storage == "On")
 {
 //turn On the LED
 digitalWrite(LED, HIGH);
 }
 else
 {
 //turn Off the LED
 digitalWrite(LED, LOW);
 }

 //send a message to the user
 server.send(200,"text/html","ok");
}

Before talking about the rest of the HTML page, let's talk about the setup()
and loop() functions. In the setup() function we have to set the pin as OUTPUT,
then start a serial communication with the computer and call the connectToWiFi()
and setupServer() functions.

Code 21.4.4 The setup() function

void setup()
{
 //set the pin used by the LED as OUTPUT
 pinMode(LED, OUTPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to the
 //wireless network and setup the server
 connectToWiFi();
 setupServer();

 //wait 4 s for the server to start
 delay(4000);
}

In the loop() function we need to put one instruction for listening to
incoming requests from the user.

154
www.plusivo.com Plusivo – ESP8266 Guide

 21. Lesson 16: Control an LED from web

Code 21.4.5 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

The JavaScript part will remain partially the same. When the button is
clicked, we will check if the class assigned is css_off and if that is true, we will set
the value to On and remove the css_off class using .removeClass() method and
add the new class css_on. Also here we will have an ajax call for sending a request
to the server and send some data to the server, in this case we are sending "On". If
the statement is false, then we will set the value to Off, remove the css_on class,
add css_off class and make an ajax call for sending a request to the server and
send some data to the server, in this case we are sending "Off". So, in the HTML we
are only adding two ajax calls.

Code 21.4.6 JavaScript

<script>
 $(document).ready(function(){
 $('#id_button').click(function(){
 var current_state = $("#id_bulb").hasClass("css_off");

 if(current_state == true)
 {
 $.ajax({
 url:'/led',
 type: 'POST',
 data: {state: 'On'},
 });
 $('#id_button').val('On');
 $('#id_bulb').removeClass('css_off').addClass('css_on');
 }
 else
 {
 $.ajax({
 url:'/led',
 type: 'POST',
 data: {state: 'Off'},
 });
 $('#id_button').val('Off');
 $('#id_bulb').removeClass('css_on').addClass('css_off');
 }
 });
 });
</script>

155
www.plusivo.com Plusivo – ESP8266 Guide

 22. Lesson 17: Dim an LED from web

22. Lesson 17: Dim an LED from web

22.1 Overview
In this lesson you will learn how to control the brightness of an LED from a

browser. This lesson is similar with the previous one, but this time we will use a
slider for controlling the brightness.

22.2 Components required
• Development board;

• 1 x LED;

• 1 x 150Ω resistor ;

• Breadboard 830p;

• 2 x male-to-male jumper wire;

• Micro USB – Type A USB Cable;

22.3 Connections
Below is the schematic:

Next, you can see a visual representation of the project:

156
www.plusivo.com Plusivo – ESP8266 Guide

 22. Lesson 17: Dim an LED from web

22.4 Code
The code for this lesson is similar with the one from the previous lesson, but

we will use a slider for controlling the brightness of the LED. Please check the
Therory lesson, where we defined a slider. Initially, the LED will be turned off, and
you will need to adjust the slider tot turn it on and control the light intensity. The
code for this lesson can be found in the folder "Lesson 17: Dim an LED from web".

The code starts with the inclusion of the ESP8266WebServer.h library, then
with the declaration of the two variables for storing the credentials of the wireless
network that the board is going to connect to, creating an instance of the
ESP8266WebServer and the declaration of the pin used by the LED. The
connectToWiFi() function will remain the same as in the previous lesson. The
setupServer() function contains the instructions to set up the main page and to start
the server.

Code 22.4.1 The setupServer() function

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

The htmlIndex() starts by returning a String using server.arg(String) and
the method String.toInt() converts the String variable to int, and, along with the
map function, we will convert the values of the slider, from 0 to 100, to int values,

157
www.plusivo.com Plusivo – ESP8266 Guide

 22. Lesson 17: Dim an LED from web

from 0 to 1023.

Next, using an if statement we will check if the value is 0, then the LED will
be set to LOW, otherwise using analogWrite (pin, value), we will send a PWM
signal that will change the brightness of the LED. At the end of the function, we will
send the page to the user.

Code 22.4.2 The function that deals with the HTML page and controlling the LED

void htmlIndex()
{
 //server.arg(name) returns the value (as string) of the argument "name"
 //using the method String.toInt(), we convert a String variable to int
 int value = server.arg("state").toInt();

 //remap the value to a new range (from 0 to 100)
 value = map(value, 0, 100, 0, 1023);

 //in case the value is 0, turn off the led using digitalWrite();
 //analogWrite(pin,0) doesn't turn off completely the led
 if(value == 0)
 digitalWrite(LED, LOW); //turn off the LED
 else
 analogWrite(LED, value); //change the brightness of the led

 //send the message to the user
 server.send(200, "text/html", page);
}

In the setup() function we will set the pin used by the LED as OUTPUT,
then start a serial communication with the computer and call the two functions used
for connecting to WiFi and setup the server, connectToWiFi() and setupServer().

Code 22.4.3 The setup() function

void setup()
{
 pinMode(LED, OUTPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to wifi
 //and setup the server
 connectToWiFi();
 setupServer();
}

The loop() function listens for any request from the user, using the
server.handleClient() instruction.

158
www.plusivo.com Plusivo – ESP8266 Guide

 22. Lesson 17: Dim an LED from web

Code 22.4.4 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

Finally, the HTML page. This page is stored as a String and sent to the user in
the htmlIndex() function. In the head of the HTML page we will include the link for
Bootstrap and jQuery. The body of the HTML page is stylized with the Bootstrap grid
system and contains a div block that stores a paragraph, another block for the slider
and one for telling the user the current brightness.

Code 22.4.5 The HTML body

<body>
 <div class='container-fluid text-center'>
 <div class='row'>
 <div class='col-sm-12' style='color:red;font-size:7vh'>
 <p>Use the slider to control the brightness.</p>
 </div>
 </div>

 <div class='col-sm-12'>
 <input type='range' min='0' max='100' class='form-control-range'
id='slider'/>
 </div>
 <div class='row'>
 <div class='col-sm-12'>
 <h3 id='status'></h3>
 </div>
 </div>
 </div>
</body>

The JavaScript part is composed from one instruction that reads the current
state of the slider and stores it in a variable state_slider. Also using this variable and
the .html() method, we will display the brightness in the browser. Next, is the ajax
call which will send the state_slider value to the server. Then, in the htmlIndex()
function, this value is converted to int and remapped.

159
www.plusivo.com Plusivo – ESP8266 Guide

 22. Lesson 17: Dim an LED from web

Code 22.4.6 JavaScript

 <script>
 $('#slider').on('change', function(){
 var state_slider = $('#slider').val();

 $('#status').html('Brightness: ' + state_slider + ' %');
 $.ajax({
 url: '/',
 type: 'POST',
 data: {state: state_slider}
 });
 });
 </script>

160
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

23. Lesson 18: Dim an RGB LED from web

23.1 Overview
In this lesson you will learn how to control the brightness of each colour of a

RGB LED. This lesson is very similar with the previous one, but this time we have a
RGB LED, inside which there are 3 LEDs: red, green and blue.

23.2 Components required
• Development board;

• 1 x RGB LED;

• 3 x 150Ω resistor ;

• Breadboard 830p;

• 4 x male-to-male jumper wire;

• Micro USB – Type A USB Cable;

23.3 Connections
Here is the schematic:

Below, you can find a visual representation of the connections:

161
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

23.4 Code
The code for this lesson is similar with the one from the previous lesson, but

we will use three sliders, one for each colour. More details can be found in the code,
located in folder "Lesson 18: Dim an RGB LED from web".

At the beginning of the code we need to declare the pins used by the RGB
LED, which contains three LEDs, a red one, a green one and a blue one. The
connectToWiFi() function is the same as in the previous lesson. The setupServer()
starts with the instruction for setting up the main page, and it is followed by three
handlers for each LED. Also this function contains the instruction server.begin()
which starts the server.

Code 23.4.1 The setupServer() function

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);
 server.on("/redFunction", redFunction);
 server.on("/greenFunction", greenFunction);
 server.on("/blueFunction", blueFunction);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

The htmlIndex() contains only the instruction for sending the HTML page
stored as a String to the user.

162
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

Code 23.4.2 The htmlIndex() function

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

The other three functions called in the setupServer() contains the same
instructions. When one of the sliders is moved, the state will be sent to the server and
the corresponding function will be called. In each function there are the instructions
for converting the String to int and remap the values. Then in the if statement we
will check if the value is 0, then the respective LED will be turned Off, otherwise the
value will be applied using analogWrite(). In the end of each function will be a
instruction for sending an OK message.

Code 23.4.3 The function for controlling the red LED

void redFunction()
{
 int value1 = server.arg("state1").toInt();
 value1 = map(value1, 0, 100, 0, 1023);

 if(value1 == 0)
 digitalWrite(red, LOW);//turn off the led
 else
 analogWrite(red, value1);//change the brightness of red

 server.send(200, "text/html", "red");
}

Code 23.4.4 The function for controlling the green LED

void greenFunction()
{
 int value2 = server.arg("state2").toInt();
 value2 = map(value2, 0, 100, 0, 1023);

 if(value2 == 0)
 digitalWrite(green, LOW);//turn off the led
 else
 analogWrite(green, value2);//change the brightness of green

 server.send(200, "text/html", "green");
}

163
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

Code 23.4.5 The function for controlling the blue LED

void blueFunction()
{
 int value3 = server.arg("state3").toInt();
 value3 = map(value3, 0, 100, 0, 1023);

 if(value3 == 0)
 digitalWrite(blue, LOW);//turn off the led
 else
 analogWrite(blue, value3);//change the brightness of blue

 server.send(200, "text/html", "blue");
}

In the setup() function we will set all LEDs as OUTPUT, then start a serial
communication with the computer and call the connectToWiFi() and setupServer()
functions.

Code 23.4.6 The setup() function

void setup()
{
 pinMode(red, OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(blue, OUTPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to wifi
 //and setup the server
 connectToWiFi();
 setupServer();
}

In the loop() function we will listern for any incoming request from the user
using server.handleClient().

Code 23.4.7 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

164
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

The HTML page is similar with the one from the previous lesson, the only
difference is that this time we will have three sliders. In the body of the page we need
to create three sliders and besides each slider will be a block that displays the current
state of the slider (which is also the brightness of the LED).

Code 23.4.8 The HTML page body
 <body>
 <div class='container-fluid text-center'>
 <div class='row'>
 <div class='col-sm-12' style='color:red;font-size:7vh'>
 <p>Use the sliders to control the brightness.</p>
 </div>
 </div>

 <div class='row'>
 <div class='col-sm-12' style='color:red;font-size:3vh'>
 Red:
 <b id='status1'>
 </div>
 </div>
 <div class='col-sm-12'>
 <input type='range' min='0' max='100' class='form-control-range' id='slider_red'/>
 </div>

 <div class='row'>
 <div class='col-sm-12' style='color:green;font-size:3vh'>
 Green:
 <b id='status2'>
 </div>
 </div>
 <div class='col-sm-12'>
 <input type='range' min='0' max='100' class='form-control-range' id='slider_green'/>
 </div>

 <div class='row'>
 <div class='col-sm-12' style='color:blue;font-size:3vh'>
 Blue:
 <b id='status3'>
 </div>
 </div>
 <div class='col-sm-12'>
 <input type='range' min='0' max='100' class='form-control-range' id='slider_blue'/>
 </div>
 </div>
 </body>

The JavaScript part is also multipled by 3. We will use .on() method, with the
change event association, three times and we will proceed the same as in the
previous lesson.

165
www.plusivo.com Plusivo – ESP8266 Guide

 23. Lesson 18: Dim an RGB LED from web

Code 23.4.9 JavaScript
 <script>
 $('#slider_red').on('change', function(){
 var state_slider_red = $('#slider_red').val();

 $('#status1').html(state_slider_red + ' %');

 $.ajax({
 url: '/redFunction',
 type: 'POST',
 data: {state1: state_slider_red}
 });
 });

 $('#slider_green').on('change', function(){
 var state_slider_green = $('#slider_green').val();

 $('#status2').html(state_slider_green + ' %');

 $.ajax({
 url: '/greenFunction',
 type: 'POST',
 data: {state2: state_slider_green}
 });
 });

 $('#slider_blue').on('change', function(){
 var state_slider_blue = $('#slider_blue').val();

 $('#status3').html(state_slider_blue + ' %');

 $.ajax({
 url: '/blueFunction',
 type: 'POST',
 data: {state3: state_slider_blue}
 });
 });
 </script>

166
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

24. Lesson 19: Control a motor from web

24.1 Overview
In this lesson you will learn how to control the speed and steering of a motor

from a browser. This lesson combines the lesson Motor Control and lesson WiFi.

24.2 Components required
• Development board;

• Micro USB – Type A USB cable;

• L293D H-Bridge Motor Driver;

• Breadboard 830p;

• Breadboard power supply;

• 9 x male-to-male jumper wires;

• 1 x DC motor;

24.3 Connections
Below, you can find the schematic:

Below, you can find a visual representation of the connections:

167
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

24.4 Code
The code is based on the lesson Motor Control, but this time we will modify

the speed of the motor using a slider and the direction using two buttons. The code
can be found in the folder "Lesson 19: Control a motor from web".

The code starts with the inclusion of the library used for the web server,
declaration of two variables that will store the credentials of the wireless network
and then start an instance of the ESP8266WebServer class. Next we have to declare
the pins used for controlling the speed and direction of the motor and a variable that
will store the speed value.

Code 24.4.1 Variables declaration

#include <ESP8266WebServer.h>

const char* ssid = "..................";
const char* password = "..............";

ESP8266WebServer server(80);

//the int variable "motorspeed_pin" stores the pin used to control the speed
of the motor
const int motorspeed_pin = D5;

//the next two variables store the pins used to control the direction of the
motor
const int DIRA = D6;
const int DIRB = D7;

//the int variable "motorspeed" stores a value between 0 and 1023
//used with the function analogWrite(pin, value);
//more details can be found in the lesson Motor Control
//initially is set to 100%
int motorspeed = 1023;

168
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

The connectToWiFi() function is unchaged and in the setupServer()
function we have a instruction for setting up the main page, and we need handlers
for another four functions that will be called when the specified location is accessed:
forward() is the function which rotates the motor in one direction (forward),
backward() is the function that rotates the motor in the opposite direction
(backward), stopp() turns off the motor and setmotorspeed() reads the state of the
slider and updates the value of the speed. At the end of the setupServer() function
we have a instruction that will start the server.

Code 24.4.2 The function for setting up the server

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);;
 server.on("/forward", forward);
 server.on("/stopp", stopp);
 server.on("/backward", backward);
 server.on("/setmotorspeed", setmotorspeed);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

In the setup() function we will set the pins used by the motor as OUTPUT,
then start a serial communication with the computer and call the connectToWiFi()
and setupServer() functions.

169
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

Code 24.4.2 The setup() function

void setup()
{
 //the following instruction initialises the pin stored in the
 //variable motorspeed_pin(also DIRA and DIRB) as OUTPUT
 pinMode(motorspeed_pin, OUTPUT);
 pinMode(DIRA, OUTPUT);
 pinMode(DIRB, OUTPUT);

 //start the Serial communication with a baud rate of 115200
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to wifi
 //and setup the server
 connectToWiFi();
 setupServer();
}

In the loop() function we will listen for any request from the user.

Code 24.4.3 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

The htmlIndex() function only sends the web page to the user.

Code 24.4.4 The htmlIndex() function

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

The setmotorspeed() function is called everytime the slider changes its
value, and the current state of the slider it is syncronized with the server. In this
function we will convert the value sent from the user from String to int, then check
if that value is 0, then set the motorspeed value to 0, otherwise remap that value to
a convenient one.

170
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

Code 24.4.5 Read the value of the slider

void setmotorspeed()
{
 //server.arg(name) returns the value (as string) of the argument "name"
 //using the method String.toInt(), we convert a String variable to int
 motorspeed = server.arg("motorspeed").toInt();

 if(motorspeed == 0)
 {
 motorspeed = 0;
 }
 else
 {
 //if using the slider at 1-5%(or more) the motor does not start
 //you can increase the value "toLow" to the point when the motor
 //starts spinning even from 1%
 motorspeed = map(motorspeed, 0, 100, 200, 1023);
 }

 //display a message in Serial Monitor to
 //see when the function is called
 Serial.println(motorspeed);

 //send an OK message(see more details below)
 server.send(200,"text/html","ok");
}

In the forward() function, created to turn on the motor forward, we have
three main instructions: the first one is for setting the speed of the motor using
analogWrite(), the second one is for setting the DIRA pin to LOW and the last one
is setting the DIRB pin to HIGH, using digitalWrite().

Code 24.4.6 Turn on the motor forward

void forward()
{
 //set the speed of the motor
 analogWrite(motorspeed_pin, motorspeed);

 //set the direction of the motor forward
 digitalWrite(DIRA, LOW);
 digitalWrite(DIRB, HIGH);

 //send an OK message(see more details below)
 server.send(200,"text/html","forward");

 //display a message in Serial Monitor to
 //see when the function is called
 Serial.println("Forward");
}

The backward() function turns on the motor backward, and it is similar with

171
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

the forward() function, the only difference it is that we need to set the DIRA pin to
HIGH and the DIRB pin to LOW (this will change the direction).

Code 24.4.7 Turn on the motor backward

void backward()
{
 //set the speed of the motor
 analogWrite(motorspeed_pin, motorspeed);

 //set the direction of the motor backward
 digitalWrite(DIRA, HIGH);
 digitalWrite(DIRB, LOW);

 //send an OK message(see more details below)
 server.send(200,"text/html","backward");

 //display a message in Serial Monitor to
 //see when the function is called
 Serial.println("Backward");
}

We also need another function that will stop the motor. This function is
stopp() and here we need to set the speed pin to LOW. In this case, the direction
pins are irrelevant, but we can set them to LOW.

Code 24.4.8 Turn off the motor

void stopp()
{
 //this instruction is used to set the speed of the motor to 0 (off)
 digitalWrite(motorspeed_pin, LOW);

 //in these instructions the state is irrelevant because the motor is off
 digitalWrite(DIRA, LOW);
 digitalWrite(DIRB, LOW);

 //send an OK message(see more details below)
 server.send(200,"text/html","stop");

 //display a message in Serial Monitor to
 //see when the function is called
 Serial.println("Stop");
}

Now, let's discuss about the HTML page. This page is stored as a string and
will be sent to the user from the htmlIndex() function. In the head of the page we
will put the links for Bootstrap, jQuery and Font Awesome. In the body we will
create two buttons using Font Awesome, and when one button is pressed, using
JavaScript we will call a function to rotate the motor. Also, there is a slider that
controls the speed of the motor. When the state of the slider is modified, the new
value will be sent to the server and the motorspeed variable will be changed. The

172
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

HTML page is structured using Bootstrap grid system, and if you have trouble
understanding the HTML body, please check the theory lesson.

Code 24.4.9 The HTML body
 <body>
 <div class='container-fluid' style='font-size:10vh;color:red'>
 <div class='row'>
 <div class='col-sm-12 text-center'>
 <h1 id='status'>Control App</h1>
 </div>
 </div>

 <div class='row'>
 <div class='col-sm-12 text-center'>
 <i id='button-forward' class='fas fa-chevron-circle-up'></i>
 </div>
 </div>

 <div class='row'>
 <div class='col-sm-12 text-center'>
 <i id='button-backward' class='fas fa-chevron-circle-down'></i>
 </div>
 </div>

 <div class='row' style='height: 10vh;'> </div>

 <div class='row'>
 <div class='col-sm-12 text-center'>
 <h3>Use the slider for adjusting the motorspeed</h3>
 </div>
 </div>
 <div class='row'>
 <div class='col-sm-12 offset-lg-4 col-lg-4'>
 <input type='range' class='form-control-range' id='motorspeed-slider'/>
 </div>
 </div>

 </div>
 </body>

In order for the buttons and the slider to work, we had to insert into the page
a script that sends the values for the slider to the server. For the slider we are using
the event change, a variable that reads the state of the slider and an ajax call that
will trigger the setmotorspeed() function, sending the slider value along with it. For
the buttons we are using two events, so that the page can run flawlessly on devices
with or without touch capabilities. touchstart and mousedown are used when the
button is pressed and, using ajaxb, we will call a function that will start the motor
forward or backward, depending on which button is pressed. touchend and
mouseup are used when the button is released and a function will be called to stop
the motor.

173
www.plusivo.com Plusivo – ESP8266 Guide

 24. Lesson 19: Control a motor from web

Code 24.4.10 JavaScript

 <script language='javascript'>
 $('#motorspeed-slider').on('change', function() {
 var variable = $('#motorspeed-slider').val();

 $('#status').html('Speed: ' + variable + '%');
 $.ajax({
 url: '/setmotorspeed',
 type: 'POST',
 data: {motorspeed: variable},
 });
 });

 $('#button-forward').on('touchstart mousedown', function() {
 $('#status').html('Forward');
 $.ajax('/forward');
 });

 $('#button-forward').on('touchend mouseup', function() {
 $('#status').html('Stop');
 $.ajax('/stopp');
 });

 $('#button-backward').on('touchstart mousedown', function() {
 $('#status').html('Backward');
 $.ajax('/backward');
 });

 $('#button-backward').on('touchend mouseup', function() {
 $('#status').html('Stop');
 $.ajax('/stopp');
 });
 </script>

174
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

25. Lesson 20: Display the distance in web

25.1 Overview
This lesson is similar to the lesson Ultrasonic HC-SR04+, but in addition, you

will learn to display the distance on a web page hosted by the development board.

25.2 Components required
• Development board;

• Ultrasonic module HC-SR04+;

• Breadboard 830p;

• 4 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

25.3 Connections
Below you can see the schematic:

Next you can see the visual representation:

175
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

25.4 Code
The code is based on the lesson Ultrasonic HC-SR04+ but adds many new

concepts, however, most of them are explained in the Theory lesson, including JSON
(JavaScript Object Notation) that we are using in our code. You can find this code is
folder "Lesson 20: Display the distance in web".

In the lesson Control a LED from web the development board received data
from web, while in this lesson the development board sends data to web.

The code starts by including the ESP8266WebServer.h library and declaring
two variables that will store the credentials of the wireless network. Then, like in the
Ultrasonic HC-SR04+ lesson, we will declare the pins used by the ultrasonic
module and two variables that will help us calcutate the distance, duration and
distance. Also, we need an instance for the ESP8266WebServer class. The
connectToWiFi() function remains unchanged, you can go to the Wireless
Connectivity lesson for more details.

In the setupServer() function we need to pass to the on function a handler,
htmlIndex, that will be triggered when a HTTP request is received on the root ("/").
Also we need to pass to the on method a handler, refresh, that will send to the user
the current distance. In this function we will use the server.begin() instruction to
start the server.

176
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

Code 25.4.1 The setupServer() function

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);

 server.on("/refresh", refresh);

 //start the server
 server.begin();

 //print in serial manager that the HTTP server is started
 Serial.println("HTTP server started");
}

The htmlIndex() function is created for sending the HTML page to the user
when the default location ("/") is accessed by a user.

Code 25.4.2 Send the HTML page to the user

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

In the setup() function we will set the pins used by the ultrasonic module,
trigger as OUTPUT and echo as INPUT, then start a serial communication with the
computer and call the connectToWiFi() and setupServer() functions.

177
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

Code 25.4.3 The setup() function

void setup()
{
 //the trigger pin (transmitter) must be set as OUTPUT
 pinMode(trigPin, OUTPUT);

 //the echo pin (receiver) must be set as INPUT
 pinMode(echoPin, INPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1s so the serial communication has enough time to start
 delay(1000);

 //call the two functions used to connect to the wireless network
 //and setup the web server
 connectToWiFi();
 setupServer();
}

In the loop() function we will calculate the distance, but we also need the
time that the sound travels from the transmitter to object and back to the receiver. In
order to obtain the duration, we have to generate an ultrasound by turning the
transmitter ON for 10 microseconds and the duration is recorded using the following
instruction:

duration = pulseIn(echoPin, HIGH)

For the distance we will use the next instruction:

distance = duration*0.034/2

178
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

Code 25.4.4 The loop() function

void loop()
{
 //the method below is used to manage the incoming requests
 //from the user
 server.handleClient();

 //set the trigPin to LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 delayMicroseconds(2);

 //generate an ultrasound for 10 microseconds then turn off the transmitter
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //reads the echoPin, returns the sound wave travel time in microseconds
 duration = pulseIn(echoPin, HIGH);

 //using the formula shown in the guide, calculate the distance
 distance = duration*0.034/2;
}

Another function passed to the on method in setupServer() is refresh(). In
this function we will define a char array that will act as a buffer for sprintf(char
*buffer, const char *string, …). sprintf stands for "String print", which, instead of
printing in console, it stores the output in a char buffer. In that buffer we will store
the distance, and, using server.send, the distance will be send to JavaScript.

Code 25.4.5 Send data to user

void refresh()
{
 //create a char array
 char messageFinal[100];

 //put the distance value in buffer
 sprintf(messageFinal, "%.2f", distance);

 //send data to user
 server.send(200, "application/javascript", messageFinal);
}

The HTML page is stored as a String, the head contains the jQuery inclusion,
and in the body we will make a table with one row and two columns, one containing
a block with a text, and in the other one will be displayed the distance to the closest
object.

179
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

Code 25.5.6 The HTML body

 <body>
 <h2>Hello from Plusivo!</h2>
 <table style='font-size:20px'>
 <tr>
 <td>
 <div>Distance: </div>
 </td>
 <td>
 <div id='Distance'></div>
 </td>
 </tr>
 </table>
 </body>

For exchanging data between server and user, we need to insert a script. In
order to update the page rapidly and periodically, you have to create two functions.
The main function is used to call another function at a specified interval.

setInterval(refreshFunction, interval);

Parameters:

• refreshFunction: is a function that is called periodically;

• interval: represents the duration (in ms), it waits to call the
refreshFunction again

The second function is used to update the HTML elements. Example:

function refreshFunction(){
 $.getJSON('/refresh', function(result){
 $('#Distance').html(result);
 });
}

Parameters:

• $.getJSON() is used to access a page and get the value available there.

• /refresh represents the location where the value is stored.

• $('id').html("content") is used to change the content of a HTML tag
(identified by "id") .

180
www.plusivo.com Plusivo – ESP8266 Guide

 25. Lesson 20: Display the distance in web

Code 25.5.7 JavaScript

 <script>
 $(document).ready(function(){
 setInterval(refreshFunction,100);
 });

 function refreshFunction(){
 $.get('/refresh', function(result){
 $('#Distance').html(result);
 });
 }
 </script>

181
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

26. Lesson 21: Potentiometer, servo, DHT11
and web server

26.1 Overview
This lesson is similar with the previous one and combines three lessons,

DHT11, Potentiometer and Servo Motor and Wireless Connectivity. In this
lesson we are going to display in a browser the temperature and humidity, read using
the DHT11 sensor, and the angle of the potentiometer.

26.2 Components required
• Development board;

• Potentiometer;

• Servomotor SG90;

• 13 x male-to-male jumper wires;

• Breadboard power supply;

• 9 V battery;

• Cable 9 V battery to DC jack;

• Micro USB – Type A USB cable;

• DHT11 Humidity and Temperature sensor;

• Breadboard 830p;

• 1 x 5000 Ω resistor;

26.3 Connections
Below you can find the schematic:

182
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

Also, you can find below a visual representation of the project:

26.4 Code
The code for this lesson is similar with the one provided for the previous

lesson because we are sending some data to the user that will be displayed in the web
page. The code for this lesson can be found in the "Lesson 21: Potentiometer,
servo, DHT11 and web server" folder.

183
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

As usual, at the beginning of the code we will include the libraries used,
which are ESP8266WebServer.h, SimpleDHT.h and Servo.h, and create an
instance for each library. Also we need two variables that will store the credentials of
the wireless network that the board will connect to, a variable that will store the pin
used by the DHT11 module and three variables that will store the temperature,
humidity and angle read using the two modules.

Code 26.4.1 Include the libraries and define the variables used

#include <ESP8266WebServer.h>

//create an instance of the ESP8266WebServer library
ESP8266WebServer server(80);

//create two variables that will store the credentials of the wireless
//network
const char* ssid = "................";
const char* password = "............";

//the library "Servo.h" is used to control a servo motor using
//PWM technique
#include <Servo.h>

//declare a new object called servo
Servo servo;

#include <SimpleDHT.h>

//create an instance for the SimpleDHT library
SimpleDHT11 dht11;

//define the digital pin used to connect the module
const int dht_pin = D7;

//declare two byte variables for temperature and humidity
byte temperature = 0;
byte humidity = 0;

//create a variable that will store the state of the potentiometer
int value = 0;

In the setup() function we will start a serial communication with the
computer, then attach the servo to digital pin D1 and call the setupServer() and
connectToWiFi() functions.

184
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

Code 26.4.2 The setup() function

void setup()
{
 //start the serial communication with the computer at 115200 bits/s)
 Serial.begin(115200);

 //attach the servo on digital pin D1
 servo.attach(D1);

 //call the two functions used to connect to wifi
 //and setup the web server
 connectToWiFi();
 setupServer();

 //wait 4 s for the server to start
 delay(4000);
}

The connectToWiFi() function remains unchanged and in the setupServer()
function we will use the .on method to call a function to send the web page to the
user, which is htmlIndex(), and to call the refresh() function that will send data to
the user.

Code 26.4.3 Set up the server

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);
 server.on("/refresh", refresh);

 //start the server
 server.begin();

 //print in serial manager that the HTTP server is started
 Serial.println("HTTP server started");
}

As previously stated, the htmlIndex() function sends the HTML page to the
user.

Code 26.4.4 Send the HTML page to the user

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

185
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

As in the previous lesson, Display distance in web, we have a function that
will be called from JavaScript every 100 ms and will send to the user the new values
of the angle, the temperature and the humidity.

Code 26.4.5 The refresh function

void refresh()
{
 //create a char array
 char messageFinal[100];

 char container[100] =
 R"(
 {
 "angle": %d,
 "temperature": %d,
 "humidity": %d
 }
)";

 //put the values in messageFinal
 sprintf(messageFinal, container, value, temperature, humidity);

 //send data to user
 server.send(200, "application/javascript", messageFinal);
}

In the loop() function we will get the temperature and the humidity, and
show them in Serial Monitor. Next, we will get the state of the potentiometer, update
the angle of the servo and display it in Serial Monitor.

186
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

Code 26.4.6 The loop() function. Calculate the temperature, humidity and angle
void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();

 //read the values
 dht11.read(dht_pin, &temperature, &humidity, NULL);

 //display the values in Serial Monitor
 Serial.print("Temperature: ");
 Serial.print(temperature);
 Serial.println(" *C");
 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.println(" H");
 Serial.println();

 //read the value on pin A0
 //the pin is able to read a value between 0 and 1024 corresponding
 //to 0 V and 3.3 V
 value = analogRead(A0);

 //remap the analog value to a new range (from 0 to 180) as the
 //servo can turn max 180 degrees.
 value = map(value, 0, 1024, 0, 180);

 //turn the servo motor accordingly to the angle stored in value
 servo.write(value);

 //print in Serial Monitor the current angle of the servo
 Serial.print("Angle: ");
 Serial.println(value);

 //pause the code for 100 ms;
 delay(100);
}

Now, let's talk about the HTML page. In the head we will include the link for
jQuery and in the body we will have a table with three rows and two columns. In the
first column you can find the name and in the second column you can find the value.

187
www.plusivo.com Plusivo – ESP8266 Guide

 26. Lesson 21: Potentiometer, servo, DHT11 and web server

Code 26.4.7 The HTML page
 <head>
 <script src='https://code.jquery.com/jquery-3.3.1.min.js'></script>
 <title>Plusivo</title>
 </head>

 <body>
 <h2>Hello from Plusivo!</h2>
 <table style='font-size:20px'>
 <tr>
 <td>
 <div>Angle: </div>
 </td>
 <td>
 <div id='Angle'></div>
 </td>
 </tr>

 <tr>
 <td>
 <div>Temperature: </div>
 </td>
 <td>
 <div id='Temperature'></div>
 </td>
 </tr>

 <tr>
 <td>
 <div>Humidity: </div>
 </td>
 <td>
 <div id='Humidity'></div>
 </td>
 </tr>
 </table>
 </body>

The JavaScript part has a setInterval instruction that will call the
refreshFunction every 100 ms. In this function you can find the getJSON method
that will get some data from the server. Inside this method we will update the values
in the defined table from the HMTL body, using the .html method.

Code 26.4.8 JavaScript

 <script>
 $(document).ready(function(){
 setInterval(refreshFunction,100);
 });

 function refreshFunction(){
 $.getJSON('/refresh', function(e){
 $('#Angle').html(e.angle);
 $('#Temperature').html(e.temperature);
 $('#Humidity').html(e.humidity);
 });
 }
 </script>

188
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

27. Lesson 22: Buzzer from web

27.1 Overview
In this lesson you will learn how to turn On and Off a buzzer from a web

browser.

27.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

27.3 Connections
Below you can find the schematic:

Also, you can find below a visual representation of the project:

189
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

27.4 Code
The code for this lesson is almost identical with the one from the lesson

Control an LED from web. You can find this code in the folder "Lesson 22: Buzzer
from web".

Firstly, we need to include the ESP8266WebServer.h library, declare two
variables for the credentials of the wireless network, declare the pin used by the
buzzer, declare a String variable that will help us later and create an instance of the
ESP8266WebServer class.

The connectToWiFi() function still remains the same, in the setupServer()
function we need to pass to the on method a handler that will send the HTML page
to the user, and another handler that will be triggered when the button is clicked.
Also in this function is an instruction that will start the server.

Code 27.4.1 Set up the server

void setupServer()
{
 server.on("/", htmlIndex);
 server.on("/buzzer_function", buzzer_function);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

The htmlIndex() function contains a single instruction that will send the
HTML page to the user.

190
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

Code 27.4.2 Send the HTML page to the user

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

The function that will control the buzzer is buzzer_function(). This function
is called everytime the button is clicked, and, using the String variable container in
which we will store the current state of the button, we will decide if the state is On,
then the buzzer will turn on at a frequency of 1000 Hz, otherwise the buzzer will be
turned off. At the end of this function we need to send on OK message.

Code 27.4.3 The function for controlling the buzzer

void buzzer_function()
{
 container = server.arg("state");
 if(container == "On")
 {
 //turn on the buzzer at a frequency of 1000Hz
 tone(buzzer, 1000);
 }
 else
 {
 //turn off the buzzer
 noTone(buzzer);
 }
 server.send(200, "text/html", "ok");
}

The setup() function has an instruction to set the pin used by the buzzer as
OUTPUT, another instruction for starting a serial communication with the
computer and, also, contains a call of the connectToWiFi() function and one of the
setupServer() function.

191
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

Code 27.4.3 The setup() function

void setup()
{
 //set the mode of the pin used by the buzzer as OUTPUT
 pinMode(buzzer, OUTPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 delay(1000);

 connectToWiFi();
 setupServer();
}

In the loop() function we will put only one instruction used for listening to
any incoming requests.

Code 27.4.4 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

The HTML page is very simple. In the head we will include links for Font
Awesome, Bootstrap and jQuery, and we will define two CSS classes that contains
only color.

Code 27.4.5 The HTML head
 <head>
 <title>Buzzer control</title>
 <meta name='viewport' content='width=device-width, initial-scale=1'>
 <link rel='stylesheet'
href='https://use.fontawesome.com/releases/v5.1.0/css/all.css'/>
 <link rel='stylesheet'
href='https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css'/>
 <script src='https://code.jquery.com/jquery-3.3.1.min.js'></script>
 <style>
 .css_on
 {
 color: black;
 }
 .css_off
 {
 color: white;
 }
 </style>
 </head>

192
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

The body is created using Bootstrap grid system and has three rows: one that
displays a text, one that has the button and one with the speaker from Font
Awesome. The most important aspect is that the speaker tag to have the css_off
class.

Code 27.5.6 The HTML body
 <body>
 <div class='container-fluid text-center'>
 <div class='row text-center'>
 <div class='col-sm-12' style='color:red;font-size:7vh'>
 <p>Click/touch the button.</p>
 </div>
 </div>
 <div class='row'>
 <div class='col-sm-12'>
 <input type='button' class='btn btn-primary' id='id_button' value='Off'
style='font-size:7vh'>
 </div>
 </div>

 <div class='row'>
 <div class='col-sm-12'>
 <i id='speaker' class='fas fa-volume-up css_off' style='font-size:15vh'></
i>
 </div>
 </div>
 </div>
 </body>

In the JavaScript part we will modify the value of the button, the color of the
speaker and send the current value to the server using ajax. When the button is
clicked, we will check if the class assigned is css_off and if that is true, we will set
the value to On and remove the css_off class using .removeClass() method and
add the new class css_on. Also here we will have an ajax call for sending a request
to the server and send some data to the server, in this case we are sending "On" (the
buzzer will turn on at a frequency of 1000 Hz). If the statement is false, then we will
set the value to Off, remove the css_on class, add css_off class and make an ajax
call for sending a request to the server and send some data to the server, in this case
we are sending "Off" (the buzzer will turn off).

193
www.plusivo.com Plusivo – ESP8266 Guide

 27. Lesson 22: Buzzer from web

Code 27.5.7 JavaScript
 <script>
 $(document).ready(function(){
 $('#id_button').click(function(){
 var current_state = $('#speaker').hasClass('css_off');

 if(current_state == true)
 {
 $.ajax({
 url:'/buzzer_function',
 type: 'POST',
 data: {state: 'On'},
 });
 $('#id_button').val('On');
 $('#speaker').removeClass('css_off').addClass('css_on');
 }
 else
 {
 $.ajax({
 url:'/buzzer_function',
 type: 'POST',
 data: {state: 'Off'},
 });
 $('#id_button').val('Off');
 $('#speaker').removeClass('css_on').addClass('css_off');
 }
 });
 });
 </script>

194
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

28. Lesson 23: Set the frequency of a buzzer
from web

28.1 Overview
In this lesson you will learn how to turn On and Off a buzzer and control its

frequency from a web browser.

28.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

28.3 Connections
Below you can find the schematic:

Also, you can find below a visual representation of the project:

195
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

28.4 Code
The code for this lesson is an advanced version of the one from the previous

lesson, because we will add a slider to control the frequency of the buzzer, where in
the previous one, the frequency was fixed. You can find this code in the "Lesson 23:
Set the frequency of a buzzer from web" folder.

The beginning of the code is identical with the previous one: include the
ESP8266WebServer.h library, declare two variables that store the credentials of the
wireless network, declare the pin used by the buzzer, define a String variable that will
store the state of the button and an instance of the ESP8266WebServer class.

The connectToWiFi() function is unchanged, the setupServer() function
starts by passing to the on method four handlers: one that sends the HTML page to
the user, one that is triggered when the button is clicked and will modify the state
variable, another function that will be triggered when the page is reloaded and will
send to the user the previous states of the button and slider and the last function
reads the state of the slider defined in the HTML page and will change the frequency
of the buzzer. Also in the setupServer() function we will put an instruction that will
start the server.

196
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

Code 28.4.1 Set up the server

void setupServer()
{
 server.on("/", htmlIndex);
 server.on("/button_state", button_state);
 server.on("/buzzer_frequency", buzzer_frequency);
 server.on("/refresh", refresh);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

In the htmlIndex() function we will send the HTML page to the user.

Code 28.4.2 Make the HTML page available to the user

void htmlIndex()
{
 //send the message to the user
 server.send(200, "text/html", page);
}

The button_state() function will be triggered everytime the button is pressed
in the HTML web page. In this function we have an instruction that reads the value
sent to the server using an ajax call. This value is the state of the button, which will
be On or Off. Next, depending on the value of container, the buzzer will be turned
on at the specified frequency, or will be turned off.

Code 28.4.3 Read the state of the button defined in the HTML page

void button_state()
{
 container = server.arg("state");

 if(container == "On")
 {
 tone(buzzer, frequency);
 }
 else
 {
 noTone(buzzer);
 }
 server.send(200, "text/html", "ok");
}

The buzzer_frequency() function is triggered when any change is made to

197
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

the slider. The main instruction in this function is server.arg("sound").toInt(),
which translates the value of the slider sent to the server using an ajax call. This
value is stored in the frequency variable. Using an if statement and the value of the
container, we will decide whether the buzzer will be turned On at the specified
frequency or will be turned Off.

Code 28.4.4 Read the state of the slider and modify the frequency

void buzzer_frequency()
{
 frequency = server.arg("sound").toInt();

 if(container == "On")
 {
 tone(buzzer, frequency);
 }
 else
 {
 noTone(buzzer);
 }
 server.send(200, "text/html", "ok");
}

The last handler called in the setupServer() function is refresh(). This
function will be triggered each time the page will be reloaded and will send to user
the last state of the button and the last frequency set by the slider.

Code 28.4.5 Update the states when refreshing the page

void refresh()
{
 //store the last state of the button
 //"On", state = 1
 //"Off", state = 0;
 int state = 0;

 if(container == "On")
 {
 state = 1;
 }

 char data[60] = R"(
 {
 "state": %d,
 "frequency": %d
 }
)";
 char output[100];
 sprintf(output, data, state, frequency);
 server.send(200, "application/javascript", output);
}

The setup() function is identical with the one from the previous lesson. Here
198

www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

we will set the pin used by the buzzer as OUTPUT, start a serial communication
with the computer and call the connectToWiFi() and setupServer() functions.

Code 28.4.6 The setup() function

void setup()
{
 //set the mode of the pin used by the buzzer as OUTPUT
 pinMode(buzzer, OUTPUT);

 //start the Serial communication at the baudrates 115200
 Serial.begin(115200);

 delay(1000);

 connectToWiFi();
 setupServer();
}

In the loop() function we have an instruction that listens to any incoming
requests from the user.

Code 28.4.7 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

The HTML page is similar with the one from the previous lesson. The head is
similar, only in the css_off css class the color is changed from white to lightgray.

199
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

Code 28.4.8 The head of HTML page
 <head>
 <title>Buzzer control</title>
 <meta name='viewport' content='width=device-width, initial-scale=1'>
 <link rel='stylesheet'
href='https://use.fontawesome.com/releases/v5.1.0/css/all.css'/>
 <link rel='stylesheet'
href='https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css'/>
 <script src='https://code.jquery.com/jquery-3.3.1.min.js'></script>
 <style>
 .css_on
 {
 color: black;
 }
 .css_off
 {
 color: lightgray;
 }
 </style>
 </head>

In the HTML body we will add a row for the slider, and another that will
display in real time the frequency of the buzzer.

Code 28.4.9 The HTML body
 <body>
 <div class='container-fluid text-center'>
 <div class='row'>
 <div class='col-sm-12' style='color:red;font-size:7vh'>
 <p>Click/touch the button.</p>
 </div>
 </div>
 <div class='row'>
 <div class='col-sm-12'>
 <input type='button' class='btn btn-primary' id='id_button' style='font-size:7vh'>
 </div>
 </div>

 <div class='row'>
 <div class='col-sm-12'>
 <i id='speaker' class='fas fa-volume-up css_off' style='font-size:15vh'></i>
 </div>
 </div>
 <div class='col-sm-12'>
 <input type='range' min='31' max='6000' class='form-control-range' id='slider'/>
 </div>
 <div class='row'>
 <div class='col-sm-12'>
 <h3 id='status'></h3>
 </div>
 </div>
 </div>
 </body>

In the JavaScript part, the instruction $
(document).ready(refreshFunction) is used to trigger the refreshFunction every
time the HTML page is reloaded. The refreshFunction contains a getJSON
instruction that will read from the server the last registered state for the button and
also the last frequency. Using these values, the visual representation of the page will
remain the same after reloading the page.

200
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

Code 28.4.10 Get data from server when the page is reloaded

 $(document).ready(refreshFunction);

 function refreshFunction(){
 $.getJSON('/refresh', function(result){
 $('#slider').val(result.frequency);

 if(result.state == 1)
 {
 $('#id_button').val('On');
 $('#speaker').removeClass('css_off').addClass('css_on');
 }
 else
 {
 $('#id_button').val('Off');
 $('#speaker').removeClass('css_on').addClass('css_off');
 }
 $('#status').html('Frequency: ' + result.frequency + ' Hz');
 });
 };

Next, when the button is clicked it will trigger a function that will check for
the class assigned to the speaker, and on the returned value, an ajax call will be made
and will send to the server the state of the button (On or Off). Also the text on the
button will be changed and, also, the css class of the speaker.

Code 28.4.11 Send the state of the button to the server

 $('#id_button').click(function(){
 var current_state = $('#speaker').hasClass('css_off');

 if(current_state == true)
 {
 $.ajax({
 url:'/button_state',
 type: 'POST',
 data: {state: 'On'},
 });
 $('#id_button').val('On');
 $('#speaker').removeClass('css_off').addClass('css_on');
 }
 else
 {
 $.ajax({
 url:'/button_state',
 type: 'POST',
 data: {state: 'Off'},
 });
 $('#id_button').val('Off');
 $('#speaker').removeClass('css_on').addClass('css_off');
 }
 });

201
www.plusivo.com Plusivo – ESP8266 Guide

 28. Lesson 23: Set the frequency of a buzzer from web

The last part of the JavaScript is the one which deals with the slider. In a
variable will be stored the value of the slider, this value will be displayed in the
browser in the last row defined in the HTML body. Also, there is an ajax call that
will send to the server the value of the slider, which will be the frequency of the
buzzer.

Code 28.4.12 Send the state of the slider to the browser

 $('#slider').on('change', function(){
 var state_slider = $('#slider').val();

 $('#status').html('Frequency: ' + state_slider + ' Hz');
 $.ajax({
 url: '/buzzer_frequency',
 type: 'POST',
 data: {sound: state_slider}
 });
 });

202
www.plusivo.com Plusivo – ESP8266 Guide

 29. Lesson 24: Piano

29. Lesson 24: Piano

29.1 Overview
In this lesson you will learn how to create an octave from a piano and play

different sounds on the buzzer. The octave will be created using CSS and the
keyboard of the piano will be responsive.

29.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

29.3 Connections
Below you can find the schematic:

Also, you can find below a visual representation of the project:

203
www.plusivo.com Plusivo – ESP8266 Guide

 29. Lesson 24: Piano

29.4 Code
For this lesson, the code is pretty simple for the server side and the HTML

page is complicated because we are using CSS and JavaScript to design the piano and
send data to the server. We will discuss about the functions created for the server and
then about the HTML page. This code is located in the "Lesson 24: Piano" folder.

At the beginning of the code we will include the library used, then create two
variables that will store the credentials of the wireless network that the board will be
connecting to, create a variable that will store the pin used by the buzzer. Also, there
are some variables for storing the frequencies of the notes and, then, an instance of
the ESP8266WebServer class will be created.

204
www.plusivo.com Plusivo – ESP8266 Guide

 29. Lesson 24: Piano

Code 29.4.1 Variables declaration

#include <ESP8266WebServer.h>

//declare the credentials of the wireless network
const char* ssid = ".........";
const char* password = "........";

//declare the pin used by the buzzer
const int buzzer = D6;

//declare variables that will hold the frequencies of the
//notes from the sixth octave
const int c6 = 1047;
const int cs6 = 1109;
const int d6 = 1175;
const int ds6 = 1245;
const int e6 = 1319;
const int f6 = 1397;
const int fs6 = 1480;
const int g6 = 1568;
const int gs6 = 1661;
const int a6 = 1760;
const int as6 = 1865;
const int b6 = 1976;

ESP8266WebServer server(80);

In the setup() function we will set the pin used by the buzzer as OUTPUT,
then start a serial communication with the computer and call the function for
connecting to the wireless network and the function that will deal with the server
part.

Code 29.4.2 The setup() function

void setup()
{
 pinMode(buzzer, OUTPUT);

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //call the two functions used to connect connect to wifi
 //and setup the server
 connectToWiFi();
 setupServer();

 //wait 4 s for the server to start
 delay(4000);
}

205
www.plusivo.com Plusivo – ESP8266 Guide

The connectToWiFi() function still remains the same. In the setupServer()
function we will need a handler that will send the web page to the user and handlers
for playing the notes. The most important instruction is to initialise the server using
server.begin().

Code 29.4.3 Set up the server

void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);
 server.on("/c_note", c_note);
 server.on("/cs_note", cs_note);
 server.on("/d_note", d_note);
 server.on("/ds_note", ds_note);
 server.on("/e_note", e_note);
 server.on("/f_note", f_note);
 server.on("/fs_note", fs_note);
 server.on("/g_note", g_note);
 server.on("/gs_note", gs_note);
 server.on("/a_note", a_note);
 server.on("/as_note", as_note);
 server.on("/b_note", b_note);
 server.on("/off", off);

 //start the server
 server.begin();

 //print in Serial Monitor that the HTTP server is started
 Serial.println("HTTP server started");
}

The job of the htmlIndex() function is to send the HTML page to the user.

Code 29.4.4 Send the page to the user

void htmlIndex()
{
 //send the page to the user
 server.send(200, "text/html", page);
}

The next part is for the functions that will play the notes. These functions are
basically the same, only the note played is changed.

206
www.plusivo.com Plusivo – ESP8266 Guide

Code 29.4.5 Play the notes on the buzzer

void c_note()
{
 //play the note on the buzzer
 tone(buzzer, c6);
 delay(10);
 server.send(200,"text/html","ok");
}

void cs_note()
{
 //play a note on the buzzer
 tone(buzzer, cs6);
 delay(10);
 server.send(200,"text/html","ok");
}

void d_note()
{
 //play a note on the buzzer
 tone(buzzer, d6);
 delay(10);
 server.send(200,"text/html","ok");
}

We also need a function that will stop the buzzer. This function will be called
every time any key of the piano will be released.

Code 29.4.6 Stop the buzzer

void off()
{
 //turn off the buzzer
 noTone(buzzer);
 delay(10);
 server.send(200,"text/html","ok");
}

The last function is loop() where we we will listen to any incoming requests.

Code 29.4.7 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

The HTML body is very simple, it only has two rows. On the first row we

207
www.plusivo.com Plusivo – ESP8266 Guide

have a paragraph that shows the "Piano style" text. The next row is for the keyboard
of the piano which is composed of a single octave because we want to play the notes
using our computer's keyboard. All the blocks for the keys of the piano are inside a
div block, which has attached some classes defined in Bootstrap. Inside this div are
12 blocks for the 12 keys of the piano. Each block has a specific id and has a class
attached (whiteKey or blackKey) and contains a paragraph that deals with the text
that will be displayed on that key. These paragraphs also have a class that will
arrange the text on the keys (whiteKeyText or blackKeyText).

Code 29.4.8 The body of the HTML page
 <body>
 <div class='container-fluid'>
 <div class='row'>
 <div class='col-sm-12 col-xs-12 text-center'>
 <p style='color: blue; font-size: 7vh'>Piano style</p>
 </div>
 </div>
 <div class='row'>
 <div class='col-sm-12 col-xs-12 d-flex justify-content-center'>
 <div id='c1' class='whiteKey'> <p class='whiteKeyText'>C6</p> </div>
 <div id='c2' class='blackKey'> <p class='blackKeyText'>CS6</p> </div>
 <div id='c3' class='whiteKey'> <p class='whiteKeyText'>D6</p> </div>
 <div id='c4' class='blackKey'> <p class='blackKeyText'>DS6</p> </div>
 <div id='c5' class='whiteKey'> <p class='whiteKeyText'>E6</p> </div>
 <div id='c6' class='whiteKey'> <p class='whiteKeyText'>F6</p> </div>
 <div id='c7' class='blackKey'> <p class='blackKeyText'>FS6</p> </div>
 <div id='c8' class='whiteKey'> <p class='whiteKeyText'>G6</p> </div>
 <div id='c9' class='blackKey'> <p class='blackKeyText'>GS6</p> </div>
 <div id='c10' class='whiteKey'> <p class='whiteKeyText'>A6</p> </div>
 <div id='c11' class='blackKey'> <p class='blackKeyText'>AS6</p> </div>
 <div id='c12' class='whiteKey'> <p class='whiteKeyText'>B6</p> </div>
 </div>
 </div>
 </div>
 </body>

The keys of the piano are created using CSS. There are two classes for this,
one for the white keys and the other one for the black keys. Each class has a relative
position, a solid black border, specific border width and radius, centered text, specific
width and height and color. In addition to these, the blackKey class has a 0 top, so it
can be on the top of the block, 1 z-index and negative left margin, so it will be on top
of the white keys.

208
www.plusivo.com Plusivo – ESP8266 Guide

Code 29.4.9 CSS classes for the keys

.whiteKey
{
 position: relative;
 border-style: solid;
 border-color: #000000;
 border-width: 0.42vh 0.21vh 0.42vh 0.21vh;
 border-radius: 0.84vh 0.84vh 0.84vh 0.84vh;
 text-align: center;
 width: 6.32vh;
 height: 31.61vh;
 background: #FFFFFF;
}

.blackKey
{
 position: relative;
 border-style: solid;
 border-color: #000000;
 border-width: 0.42vh 0.21vh 0.42vh 0.21vh;
 border-radius: 0 0 0.84vh 0.84vh;
 text-align: center;
 top: 0;
 background: #000000;
 z-index: 1;
 width: 4.21vh;
 height: 21.07vh;
 margin: 0 0 0 -2.1vh;
}

Now, for the text that will be displayed on the keys, we have to create two
CSS classes, one for the text on the white keys and one for the text on the black keys.
Here we have to put a top margin, so the text will be on the bottom of the keys, a
color (black for the white keys and white for the black keys) and the size of the font.

Code 29.4.10 CSS classes for the text on the keys

.whiteKeyText
{
 margin-top: 27.5vh;
 color: black;
 font-size: 2.3vh;
}

.blackKeyText
{
 margin-top: 17.91vh;
 color: white;
 font-size: 1.8vh;
}

The first and the last keys of the piano are a little bit more special, because

209
www.plusivo.com Plusivo – ESP8266 Guide

the left, respectively the right, border of those keys should be more thickened (the
border will be doubled).

Code 29.4.11 Modify the border on the first and last keys

#c1
{
 border-left-width: 0.42vh;
}

#c12
{
 border-right-width: 0.42vh;
}

Also, we combined the two classes for the white and black keys, with a
negative left margin, so the black keys will be on top of the white keys. At the end,
we have the div selector, which selects all <div> elements and makes them
unselectable, so that when we have a long click, or a long touch, on a key, the text
will be unselectable.

Code 29.4.12 Bind keys and make text unselectable

.blackKey + .whiteKey
{
 margin-left: -2.1vh;
}

div
{
 webkit-user-select: none; /* Safari 3.1+ */
 moz-user-select: none; /* Firefox 2+ */
 ms-user-select: none; /* IE 10+ */
 user-select: none; /* Standard syntax */
}

Now let's talk about the most complex part, which is JavaScript, where we
will send data to server when a key is pressed, so that a specific function will be
called and the buzzer will play a note or will stop.

The first part is created so that we can play on the piano using a mouse or a
touch capable display. For that, we will bind, using .on method, the mousedown and
touchstart events, and when any of those events will be triggered, a function will
execute. This function contains an instruction, .preventDefault(), which prevents
the mousedown event to trigger first on the touch capable devices. In this function
you can find an ajax call that will send a message to the server, which will execute a
function that will play a note, depending on what key of the piano's keyboard was
pressed, and a call of the .css method that will change the background color of the
current key pressed. We have 12 such bindings, one for each key of the piano, with

210
www.plusivo.com Plusivo – ESP8266 Guide

small differences between, at the ajax call, because we have to play different notes on
the buzzer, and at the color of the background.

Code 29.4.13 Send data to server and change color of keys at pressing

$('#c1').on('mousedown touchstart', function(e){
 e.preventDefault();
 $.ajax('/c_note');
 $('#c1').css('background', '#D8D5D4');
});

$('#c2').on('mousedown touchstart', function(e){
 e.preventDefault();
 $.ajax('/cs_note');
 $('#c2').css('background', '#585757');
});

$('#c3').on('mousedown touchstart', function(e){
 e.preventDefault();
 $.ajax('/d_note');
 $('#c3').css('background', '#D8D5D4');
});

$('#c4').on('mousedown touchstart', function(e){
 e.preventDefault();
 $.ajax('/ds_note');
 $('#c4').css('background', '#585757');
});

$('#c5').on('mousedown touchstart', function(e){
 e.preventDefault();
 $.ajax('/e_note');
 $('#c5').css('background', '#D8D5D4');
});

Now, when we stop pressing on a key, we have to send some data to the
server and call a function to stop the buzzer, and, also, change the color to the initial
one.

Code 29.4.14 Stop the buzzer when releasing a key

$('#c1,#c3,#c5,#c6,#c8,#c10,#c12').on('mouseup touchend', function(e){
 e.preventDefault();
 $.ajax('/off');
 $(this).css('background', 'white');
});

$('#c2,#c4,#c7,#c9,#c11').on('mouseup touchend', function(e){
 e.preventDefault();
 $.ajax('/off');
 $(this).css('background', 'black');
});

Next, we will attach to the white keys and black keys the .mouseout event
211

www.plusivo.com Plusivo – ESP8266 Guide

that will occur when the mouse pointer leaves the selected elements. The color of the
keys will be changed back to the initial ones and a function will be called to stop the
buzzer.

Code 29.4.15 Stop the buzzer when the mouse pointer leaves the keys

$('#c1,#c3,#c5,#c6,#c8,#c10,#c12').mouseout(function(){
 $(this).css('background', 'white');
 $.ajax('/off');
});

$('#c2,#c4,#c7,#c9,#c11').mouseout(function(){
 $(this).css('background', 'black');
 $.ajax('/off');
});

When the mouse pointer enters a key, the mouseover event will trigger and
the color of its background will change.

Code 29.4.16 Change the keys color when hover the mouse over them

$('#c1').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c3').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c5').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c6').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c8').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c10').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});
$('#c12').mouseover(function(){
 $(this).css('background', '#E7E0DF');
});

212
www.plusivo.com Plusivo – ESP8266 Guide

Code 29.4.17 Change the keys color when hover the mouse over them

$('#c2').mouseover(function(){
 $(this).css('background', '#464646');
});
$('#c4').mouseover(function(){
 $(this).css('background', '#464646');
});
$('#c7').mouseover(function(){
 $(this).css('background', '#464646');
});
$('#c9').mouseover(function(){
 $(this).css('background', '#464646');
});
$('#c11').mouseover(function(){
 $(this).css('background', '#464646');
});

For the second part, which is created so that we can play on the piano using
our computer's keyboard, we need two events, keydown and keyup, which are
attached to the HTML body and will be triggered when a key on the keyboard is
pressed, and, respectively, released. Also, we need a variable initialised with true,
which will become false when a key is pressed and back to true when the key is
released. This variable will help us with long key presses.

When the keydown method will be triggered, we will use a variable, that
stores the current key pressed, and use a switch statement to send data to the server
and call the correct function to play the note on the buzzer. Along with the ajax call,
we will change the color of the key's background so that we will know what key of
the piano was pressed.

213
www.plusivo.com Plusivo – ESP8266 Guide

Code 29.4.18 Keydown event
var action = true;
 $('body').on('keydown', function(e){
 if (action == true){
 action = false;
 var key = e.which;
 switch(key)
 {
 case 90:
 $.ajax('/c_note');
 $('#c1').css('background', '#D8D5D4');
 break;
 case 83:
 $.ajax('/cs_note');
 $('#c2').css('background', '#585757');
 break;
 case 88:
 $.ajax('/d_note');
 $('#c3').css('background', '#D8D5D4');
 break;
 case 68:
 $.ajax('/ds_note');
 $('#c4').css('background', '#585757');
 break;
 case 67:
 $.ajax('/e_note');
 $('#c5').css('background', '#D8D5D4');
 break;
 case 86:
 $.ajax('/f_note');
 $('#c6').css('background', '#D8D5D4');
 break;
 case 71:
 $.ajax('/fs_note');
 $('#c7').css('background', '#585757');
 break;
 case 66:
 $.ajax('/g_note');
 $('#c8').css('background', '#D8D5D4');
 break;
 case 72:
 $.ajax('/gs_note');
 $('#c9').css('background', '#585757');
 break;
 case 78:
 $.ajax('/a_note');
 $('#c10').css('background', '#D8D5D4');
 break;
 case 74:
 $.ajax('/as_note');
 $('#c11').css('background', '#585757');
 break;
 case 77:
 $.ajax('/b_note');
 $('#c12').css('background', '#D8D5D4');
 break;
 }
 }
 });

On the computer's keyboard, each key has a specific code and you can find
the ones used in this code in a table below:

214
www.plusivo.com Plusivo – ESP8266 Guide

Key Code

Z 90

S 83

X 88

D 68

C 67

V 86

G 71

B 66

H 72

N 78

J 74

M 77

When the keyup event will be triggered, a function will modify the action
variable and make it true. In the key variable we will store the current digit pressed
and, depending on its value, we have two if statements: one for the white keys, and
one for the black keys, that will call the function to stop the buzzer and change the
background color to the initial one.

Code 29.4.19 Keyup event

$('body').on('keyup', function(e){
 action = true;
 var key = e.which;
 if(key==90 || key==88 || key==67 || key==86 || key==66 ||key==78 ||key==77)
 {
 $.ajax('/off');
 $('#c1,#c3,#c5,#c6,#c8,#c10,#c12').css('background', 'white');
 }

 if(key==83 || key==68 || key==71 || key==72 || key==74)
 {
 $.ajax('/off');
 $('#c2,#c4,#c7,#c9,#c11').css('background', 'black');
 }
});

215
www.plusivo.com Plusivo – ESP8266 Guide

 30. Lesson 25: Piano with 7 octaves

30. Lesson 25: Piano with 7 octaves

30.1 Overview
In this lesson you will learn how to create a full piano and play all the notes

from the seven octaves. The piano will be created using CSS and the keyboard of the
piano will be responsive.

30.2 Components required
• Development board;

• Breadboard 830p;

• 1 x passive buzzer;

• Diode;

• Transistor;

• 1 x 1000 Ω resistor;

• 7 x male-to-male jumper wires;

• Micro USB – Type A USB cable;

30.3 Connections
Below you can find the schematic:

Also, you can find below a visual representation of the project:

216
www.plusivo.com Plusivo – ESP8266 Guide

 30. Lesson 25: Piano with 7 octaves

30.4 Code
The code for this lesson is an improved version of the one from the previous

lesson. This time we will have additional buttons that will change the octave. We
need this because the space on the computer's keyboard is limited. You can find the
code in the "Lesson 25: Piano with 7 octaves" folder.

The code starts with the declaration of the variables that will store the
frequencies for all 7 octaves, then we need to include the ESP8266WebServer
library, declare two variables that will store the credentials of the wireless network
that the board will connect to, declare the pin used by the buzzer, declare the octave
variable that will store the current octave selected and, finally, we need an instance of
the ESP8266WebServer class. The variables that stores the frequencies will be put in
arrays, one array for each octave, and then these arrays will be included in another
array.

Code 30.4.1 Store the notes in arrays
//create arrays with the notes for each octave (in order)
int octave1[] = {c1, cs1, d1, ds1, e1, f1, fs1, g1, gs1, a1, as1, b1};
int octave2[] = {c2, cs2, d2, ds2, e2, f2, fs2, g2, gs2, a2, as2, b2};
int octave3[] = {c3, cs3, d3, ds3, e3, f3, fs3, g3, gs3, a3, as3, b3};
int octave4[] = {c4, cs4, d4, ds4, e4, f4, fs4, g4, gs4, a4, as4, b4};
int octave5[] = {c5, cs5, d5, ds5, e5, f5, fs5, g5, gs5, a5, as5, b5};
int octave6[] = {c6, cs6, d6, ds6, e6, f6, fs6, g6, gs6, a6, as6, b6};
int octave7[] = {c7, cs7, d7, ds7, e7, f7, fs7, g7, gs7, a7, as7, b7};

int *octave_array[] = {octave1, octave2, octave3, octave4, octave5, octave6, octave7};

The setup(), loop(), connectToWiFi(), htmlIndex(), off() functions are
unchanged, so we will not discuss about them, but you can look in the full code to
remember them. The setupServer() function has two additional handlers, set_octave
and refresh_function, which reads from the user the current selected octave and,
when the default location is reloaded, the octave value will be sent to the user so that
the content of the page will not be changed.

217
www.plusivo.com Plusivo – ESP8266 Guide

 30. Lesson 25: Piano with 7 octaves

Code 30.4.2 Read the octave from the user

void set_octave()
{
 //store the current octave
 octave = server.arg("octave").toInt();
 Serial.println(octave);
 server.send(200,"text/html","ok");
}

Code 30.4.3 Send the value of octave to the user

void refresh_function()
{
 //send the last known octave to the user
 //we will use this so that even if we will
 //refresh the page, the content will not
 //change
 char c = octave + '0';
 String a = String(c);
 server.send(200, "application/javascript", a);
}

The functions created for notes are almost the same, the only thing that
changed is the second parameter of the tone function, which is the frequency at
which the buzzer resonates. We retrieve this parameter from the two dimensional
array in which there are stored the frequencies corresponding to each musical octave
(line) and key (collumn).

218
www.plusivo.com Plusivo – ESP8266 Guide

Code 30.4.4 Functions created for playing the notes

void c_note()
{
 //play a note on the buzzer
 tone(buzzer, octave_array[octave-1][0]);
 Serial.println(octave_array[octave-1][0]);
 delay(10);
 server.send(200,"text/html","ok");
}

void cs_note()
{
 //play a note on the buzzer
 tone(buzzer, octave_array[octave-1][1]);
 Serial.println(octave_array[octave-1][1]);
 delay(10);
 server.send(200,"text/html","ok");
}

void d_note()
{
 //play a note on the buzzer
 tone(buzzer, octave_array[octave-1][2]);
 Serial.println(octave_array[octave-1][2]);
 delay(10);
 server.send(200,"text/html","ok");
}

void ds_note()
{
 //play a note on the buzzer
 tone(buzzer, octave_array[octave-1][3]);
 Serial.println(octave_array[octave-1][3]);
 delay(10);
 server.send(200,"text/html","ok");
}

Now, let's talk about the HTML page, which has a couple of new things
added. The HTML body still has the piano, but has two new rows, one that display a
text to inform the user what to do, and the other one contains seven bootstrap-
buttons that will change the octave.

219
www.plusivo.com Plusivo – ESP8266 Guide

Code 30.4.5 HTML body
<div class='row'>
 <div class='col-sm-12 col-xs-12 text-center' style='font-size: 5vh'>
 <p>Select the octave:</p>
 </div>
</div>
<div class='row'>
 <div class='col-sm-12 col-xs-12 text-center'>
 <button id='b1' type='button' class='btn btn-outline-primary'>First</button>
 <button id='b2' type='button' class='btn btn-outline-primary'>Second</button>
 <button id='b3' type='button' class='btn btn-outline-primary'>Third</button>
 <button id='b4' type='button' class='btn btn-outline-primary'>Fourth</button>
 <button id='b5' type='button' class='btn btn-outline-primary'>Fifth</button>
 <button id='b6' type='button' class='btn btn-outline-primary'>Sixth</button>
 <button id='b7' type='button' class='btn btn-outline-primary'>Seventh</button>
 </div>
</div>

In addition to the already defined CSS classes, we have added one that will
override the default font-size of the buttons, and is also marked as important to be
sure that will apply to the buttons.

Code 30.4.6 CSS classes

button
{
 font-size: 2vh !important;
}

In JavaScript, we need a variable to store the number of current octave and
then create a function to send it to the server via an ajax call.

Code 30.4.7 Send the current octave to the sever

var octave;

function change_octave(){
 $.ajax({
 url: '/set_octave',
 type: 'POST',
 data: {octave: octave},
 });
}

For the text that will be displayed on the keys, we need a function that adds
the note plus the current octave. To set the text, we are going to use the .html
method for each key.

220
www.plusivo.com Plusivo – ESP8266 Guide

Code 30.4.8 Modify the text displayed on the keys

function keys_text(octave)
{
 $('#k1').html('C' + octave);
 $('#k2').html('CS' + octave);
 $('#k3').html('D' + octave);
 $('#k4').html('DS' + octave);
 $('#k5').html('E' + octave);
 $('#k6').html('F' + octave);
 $('#k7').html('FS' + octave);
 $('#k8').html('G' + octave);
 $('#k9').html('GS' + octave);
 $('#k10').html('A' + octave);
 $('#k11').html('AS' + octave);
 $('#k12').html('B' + octave);
};

After we refresh the page, or we access it for the first time, after it is fully
loaded, a function will be called and get from the server the last octave returned and
modify the text displayed on them by calling the function keys_text() that has as
argument the octave received from the server.

Code 30.4.9 Reinstate the octave

$(document).ready(function(){
 $.get('/refresh', function(octave){
 keys_text(octave);
 });
});

When a click is registered on any of the defined buttons, a function will be
triggered, and depending on which button was pressed, the value of the octave will
be changed, the keys_text() will be called to update the text on the keys and the
change_octave() function will be called to send the new value of octave to the
server.

Code 30.4.10 Change the octave

$('button').on('click', function(){
 octave = this.id;
 keys_text(octave);
 change_octave();
});

The rest of the JavaScript is already detailed in the last lesson, so go check
that for a better understanding of the code.

221
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

31. Lesson 26: Shift Register

31.1 Overview
In this lesson you will learn how to use a shift register to control multiple

LEDs from an LED bar.

31.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 74HC595 Shift Register

• 22 x male-male jumper wires;

• 10 x 150 Ω resistors;

• 10 Segment LED Bar

31.3 Component Introduction
74HC595
The 74HC595 Serial to Parallel Converter is a simple 8-bit shift register, which

has 8 outputs and three inputs that we are using to feed data into it a bit at a time. A
shift register consists of several single bit D-Type Data Latches, one for each data
bit, either a logic 0 or a 1, connected together in a serial type daisy-chain
arrangement so that the output from one data latch becomes the input of the next
latch and so on. Basically, this shift register is a device that allows additional inputs
or outputs to be added to a microcontroller by converting data between parallel and
serial formats, using only three pins of the development board.

To set the value of each memory location on or off, we feed in the data using
the Data and Clock pins of the chip. Below is the schematic of the chip:

222
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

8 – GND Ground Pin

16 - VCC Power Pin

15 - QA Output

1-7 – QB-QH Output

9 - QH' Extension pin (usually used for
connecting an additional shift register)

14 – SER Data Pin

12 – RCLK Latch Pin

11 – SRCLK Clock Pin

13 – OE Output Enable

10 – SRCLR Master Reset

The Clock pin needs to receive eight pulses. At each pulse, if the data pin is
high, then a 1 gets pushed into the shift register, otherwise, a 0. When all eight pulses
have been received, enabling the Latch pin copies the eight values to the latch
register.

The OE pin, which is used to enable or disable the outputs all at once. You
could attach this to a PWM pin and control, for example, the brightness of the LEDs.
This pin is active low, so we connect it to GND.

LED bar
A 10 Segment LED Bar is composed of 10 individual LEDs housed together,

each with an individual anode and cathode connection. They are perfect for
prototyping because of their compact footprint and simple hookup. You can identify
the anode side by the left corner, which is rounded, and the others form a right angle.

223
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

31.4 Connections
Because we are using an 8-bit shift register, we only have 8 outputs on the

chip, and our LED bar has 10 segments, so we have to use 2 additional pins from our
development board to connect all the individual LEDs.

Below, you can find the schematic:

The scheme without the symbols for GND and +3.3V can be found in the
"Lesson 26: Shift Register" folder.

Below, you can find a visual representation of the connections:

224
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

31.5 Code
The principle of this code is similar with the one from lesson Blink an LED,

but this time we have to control 10 LEDs, two of them connected to the development
board, and eight connected to the shift register. The code can be found in the folder
"Lesson 26: Shift Register".

As you previously saw in the scheme, we need three pins from the
development board, used for Data, Latch and Clock, to connect our shift register. At
the beginning of the code we have to declare these pins used by the shift register and,
moreover, we need to declare the pins used by the two LEDs connected to the
development board.

Code 31.5.1 Variables declaration

//declare the pins used by the shift register
const int dataPin = D8;
const int latchPin = D7;
const int clockPin = D6;

//declare two pins used by the remaining LEDs
const int led_9 = D1;
const int led_10 = D2;

In the setup() function we will start a serial communication with the
computer, then set the pins used by the two LEDs and shift register as OUTPUT.

225
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

Code 31.5.2 The setup() function

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //set the pins used by the two LEDs to output
 pinMode(D1, OUTPUT);
 pinMode(D2, OUTPUT);

 //set pins to output so you can control the shift register
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

In the loop() function we will call a function that will turn on each LED, wait
500 ms and then call another function that will turn on the LEDs and create a
charging effect. After this we will wait another 500 ms before the next run of the
loop() function.

Code 31.5.3 The loop() function

void loop()
{
 //turn On each LED and wait 1 s
 individual();

 //wait 500 ms before the next effect
 delay(500);

 //turn On the LED and show a charging effect
 charging();

 //wait 500 ms
 delay(500);
}

In the individual() function we will declare eight byte variables because we
are working with an 8-bit shift register. This shift register has 8 outputs, and to make
an output HIGH, we need to send an 1 on that specific OUTPUT, and to make it
LOW, we will send a 0. So, we have eight byte variables and each variable has only
one bit set to HIGH, and this bit corresponds to our LED on the ledbar. Keep in mind
that we are starting from the MSB (Most Significant Bit), which is the rightmost bit,
and go to the LSB (Least Significant Bit), which is the leftmost bit. Therefore, the first
LED will turn on when we will send first_led = 0b00000001, and the eight LED will
turn on when we will send eight_led = 0b10000000. These eight variables will be
stored in a byte array, so we can use a for loop to turn each LED one at a time.

226
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

Code 31.5.4 Declaration of byte variables that will be sent later to the shift register

 //declare byte data types to be sent to the
 //shift register
 //a byte data stores 8 bits that corresponds
 //to the 8 outputs of the shift register
 //"0" represents LOW state, and "1" HIGH
 byte first_led = 1; //equivalent: 0b00000001
 byte second_led = 2; //equivalent: 0b00000010
 byte third_led = 4; //equivalent: 0b00000100
 byte fourth_led = 8; //equivalent: 0b00001000
 byte fifth_led = 16; //equivalent: 0b00010000
 byte sixth_led = 32; //equivalent: 0b00100000
 byte seventh_led = 64; //equivalent: 0b01000000
 byte eighth_led = 128; //equivalent: 0b10000000

 //store the 8 byte variables into an array
 byte led[] =
 {
 first_led, second_led, third_led, fourth_led,
 fifth_led, sixth_led, seventh_led, eighth_led
 };

The principale of the shift register is: when the clockPin goes from LOW to
HIGH, the shift register reads the state of the dataPin. As the data gets shifted in it,
it is saved in the internal memory register. When the latchPin goes from LOW to
HIGH, the sent data gets moved into the latch register, the output pins.

We have to use byte variables to send 8 bits at a time to the shift register. To
send the data to the shift register we need the following command:

digitalWrite(latchPin, 0);
shiftOut(dataPin, clockPin, bitorder, value);
digitalWrite(latchPin, 1);

The shiftOut() function shifts out a byte of data one bit at a time. Each bit is
written in to a data pin, after which a clock pin is pulsed to indicate that the bit is
available. The bitorder argument indicates the order to shift out the bits, MSBFIRST
(Most Significant Bit First) or LSBFIRST (Least Significant Bit First), and the value is
the byte to shift out.

To update the output pins we have to set the latchPin to HIGH, but it is not
enough to set latchPin to HIGH, data transfer happens on transition from LOW to
HIGH (rising edge).

These instructions will be put in a for loop that will turn on the eight LEDs
with a delay of 1 s.

227
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

Code 31.5.5 Turn on all the LEDs connected to the shift register, one at a time

 //using the for loop we are going to send each byte
 //data to the shift register and turn on the individual
 //LEDs
 for(int i = 0; i < 8; i++)
 {
 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);

 //shift the 8 bits out with Most Significant Bit First
 shiftOut(dataPin, clockPin, MSBFIRST, led[i]);

 //copy the values to the latch register
 digitalWrite(latchPin, 1);

 //wait 1 s before the next instruction
 delay(1000);
 }

We turned on all the LEDs connected to the shift register, but we have
another two connected directly to the developemtn board. Before turning these two
LEDs on, we have to send a 0 to the shift register, because it will keep the last state
and the eight LEDs will remain on.

Code 31.5.6 Turn on the rest LEDs

 //send a 0 byte value to turn all the LEDs off
 //before any other instruction
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);

 //turn On the nineth LED of the ledbar
 //for 1 s
 digitalWrite(led_9, HIGH);
 delay(1000);
 digitalWrite(led_9, LOW);

 //turn On the tenth LED of the ledbar
 //for 1 s
 digitalWrite(led_10, HIGH);
 delay(1000);
 digitalWrite(led_10, LOW);

The charging() function is similar with the individual(), but this time we
are not going to use separate byte variables, we will put them directly into an array
and in the for loop we are going to send the byte variables each 500 ms. If you look
at the array, you can notice that the variables create stairs and that will give us that

228
www.plusivo.com Plusivo – ESP8266 Guide

 31. Lesson 26: Shift Register

charging effect.

Code 31.5.7 The charging() function
 //declare an byte array to store the states for the
 //8 LEDs connected to the shift register
 byte charging_array[] =
 {
 0b00000001,
 0b00000011,
 0b00000111,
 0b00001111,
 0b00011111,
 0b00111111,
 0b01111111,
 0b11111111
 };

 for(int i = 0; i < 8; i++)
 {
 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);

 //shift the 8 bits out with Most Significant Bit First
 shiftOut(dataPin, clockPin, MSBFIRST, charging_array[i]);

 //copy the values to the latch register
 digitalWrite(latchPin, 1);

 //wait 500 ms
 delay(500);
 }

This time we will not send a 0 to turn off all the LEDs connected to the shift
register, we will turn on the last two LEDs and then turn all of them off.

Code 31.5.8 Turn on the last two LEDs and then turn all LEDs off
 //turn On the nineth LED and wait 500 ms
 digitalWrite(led_9, HIGH);
 delay(500);

 //turn On the tenth LED and wait 500 ms
 digitalWrite(led_10, HIGH);
 delay(500);

 //turn Off all the LEDs of the ledbar
 digitalWrite(led_9, LOW);
 digitalWrite(led_10, LOW);

 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);

229
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

32. Lesson 27: Multiple Shift Registers

32.1 Overview
In this lesson you will learn how to connect multiple shift registers to the

development board. The big advantage is that we do not use any supplimentary pins
for the second shift register, we only have to connect the dataPin of the second shift
register to QH' pin of the first shift register.

32.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 2 x 74HC595 Shift Register

• 21 x male-male jumper wires;

• 10 x 150 Ω resistors;

• 10 Segment LED Bar;

32.3 Connections
Below, you can find the schematic:

230
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Below, you can find a visual representation of the connections:

231
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

32.4 Code
The code is very similar with the one from the previous lesson. The only

difference is that the two LEDs connected to the development board in the previous
lesson, we will connect them to the second shift register. This code can be found in
the "Lesson 27: Multiple Shift Registers" folder. Also, previously we used byte
variables, which are data type represented on 8 bits (1 byte), and working with 2 shift
registers, we need 16 bits (2 bytes).

The downside for the shiftOut function is that it can support only 8 bits, so
we have to call the function twice. Doing that, we can use sepparate byte variables
for each call, or use uint16_t data type and bit shifting.

Bit shifting is moving each digit in a number's binary representation left or
right with a specified number of bits. The bits from the direction of the shift are lost,
and 0 bits are inserted on the other end. There are two arithmetic shift operators as
following:

• >> is the arithmetic right shift operator

• << is the arithmetic left shift operator

Now let's make an example with each operator:

Left shift

1 stored as 8 bit is 00000001. Shifted to the left with one position will give as
number 2.

00000001 << 1 = 00000010

255 stored as 8 bit is 11111111. Shifted to the left with one position will
result in number 254.

11111111 << 1 = 11111110

Number 2 stored as 8 bit is 00000010. Shifted to the left with 2 positions (2
<< 2) will result in number 8.

00000010 << 2 = 00001000

Right shift

Number 255 stored as 8 bit is 11111111. Shifted to the right with one
position will result in number 127.

11111111 >> 1 = 01111111

Number 64 stored as 8 bit is 01000000 and shifted with 2 positions to the
right (64 >> 2) will result in number 16.

01000000 >> 2 = 00010000

232
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

We will work with 16 bit values, so we have to use right shifting to move the
first 8 bits to the right, and they will be replaced with 0, and these will be ignored. For
example:

0111111100000000 >> 8 = 0000000001111111 = 01111111

0101010101010101 >> 8 = 0000000001010101 = 01010101

0101010101010101 >> 0 = 0101010101010101

The shiftOut() is working with 8 bit values, so the first 8 bits (from left to
right) will be ignored. 1111111100000000 for the shiftOut() function will be
00000000.

Before we start talking about the code, let's discuss about the shiftOut()
function to see how it works internally.

Code 32.4.1 The shiftOut() function

void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t
val)
{
 uint8_t i;

 for (i = 0; i < 8; i++) {
 if (bitOrder == LSBFIRST)
 digitalWrite(dataPin, !!(val & (1 << i)));
 else
 digitalWrite(dataPin, !!(val & (1 << (7 - i))));

 digitalWrite(clockPin, HIGH);
 digitalWrite(clockPin, LOW);
 }
}

As previously stated, the principle of the shiftOut() function is that it shifts
out a byte of data one bit at a time, each bit is written in to a data pin, after which a
clock pin is pulsed to indicate that the bit is available.

The shifts are done using a for loop and inside it there is an if statement that
will verify if the bitorder is LSBFIRST, then the digitalWrite(dataPin, !!(val & (1
<< i))); instruction will be executed, otherwise the digitalWrite(dataPin, !!(val & (1
<< (7 – i)))); instruction will be executed. Let's assume that the bitorder is LSBFIRST.
Using the digitalWrite() instruction, each bit (0 or 1) will be send to the indicated
pin. The value to be send is given by the following expression: !!(val & (1 << i))
(because the bitorder is LSBFIRST). This expression is explained below:

• i is the bit number

• 1 is 00000001 in binary

• 1 << i is 00000001 shifted left by i positions

233
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

• & is the "bitwise and operator", where any_bit & 0 is zero and any_bit & 1
is any_bit

• val & (1 << i) is 0…0 (i-th bit of val) 0…0 in binary, where the i-th bit of val
is in the i-th position of the result

• !! is a double negation: it converts zero to zero and any non-zero value to one

• !!(val & (1 << i)) is either 0 or 1, and is exactly the i-th bit of val

The code starts by declaring the pins used by the shift registers and in the
setup() function we will add an instruction to start the serial communication with
the computer and, also, we will set the pins used by the shift registers as OUTPUT.

Code 32.4.2 Declaration and the setup() function

//declare the pins used by the shift register
const int dataPin = D8;
const int latchPin = D7;
const int clockPin = D6;

void setup()
{
 //start the Serial communication at 115200 baudrate
 Serial.begin(115200);

 //set pins to output so you can control the shift register
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

In the loop() function we will call another functions at an interval of 500 ms
that will light up the LEDs of the ledbar and show different effects.

234
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Code 32.4.3 The loop() function

void loop()
{
 //turn On each LED and wait 1 s
 individual();

 //wait 500 ms before the next effect
 delay(500);

 //turn On the LEDs and show a charging effect
 charging();

 //wait 500 ms
 delay(500);

 another_effect();

 //wait 500 ms
 delay(500);

 barcode();

 //wait 500 ms
 delay(500);
}

The first function will turn on each LED at an interval of 1 s. This function is
similar with the one from the previous lesson, but this time we are working with two
shift registers so we need to make two calls for the shiftOut() function to send, first,
the high byte (which deals with the LEDs from the second shift register) and then the
low byte (which controls the LEDs connected to the first shift register). This time,
instead of using an array to store ten 16 bits values, we will use a variable that has
the initial value of 0b0000000000000001 (meaning that only the first LED will light
up) and then we will use left shifting for change its value and turn on each LED.

235
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Code 32.4.4 Turn on each LED
void individual()
{
 //declaration of a 16 bit variable with the most
 //significant bit set to HIGH
 uint16_t led = 0b0000000000000001;

 //using the for loop we are going to send each byte
 //data to the shift register and turn on the individual
 //LEDs
 for(int i = 0; i < 10; i++)
 {
 byte high_byte = led >> 8;
 byte low_byte = led;

 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);

 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, high_byte);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, low_byte);

 //copy the values to the latch register
 digitalWrite(latchPin, 1);

 //left shift with one position
 led = led << 1;

 //wait 1 s before the next instruction
 delay(1000);
 }

 //send a 0 byte value to turn all the LEDs off
 //before any other instruction
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);
}

The charging effect is similar with the one form the previous lesson, but this
time we will use an array that stores ten uint16_t values, and two calls for the
shiftOut() function to send the values.

236
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Code 32.4.5 Turn on the LEDs and show a charging effect
void charging()
{
 //declare an 16 bit array to store the states for the
 //10 LEDs connected to the shift registers
 uint16_t charging_array[] =
 {
 0b0000000000000001,
 0b0000000000000011,
 0b0000000000000111,
 0b0000000000001111,
 0b0000000000011111,
 0b0000000000111111,
 0b0000000001111111,
 0b0000000011111111,
 0b0000000111111111,
 0b0000001111111111
 };

 for(int i = 0; i < 10; i++)
 {
 byte high_byte = charging_array[i] >> 8;
 byte low_byte = charging_array[i];

 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);

 //the if statement is used to differentiate the shift registers
 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, high_byte);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, low_byte);

 //copy the values to the latch register
 digitalWrite(latchPin, 1);

 //wait 500 ms
 delay(500);
 }

 //send a 0 byte value to turn all the LEDs off
 //before any other instruction
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);
}

Another function created in this code is another_effect() and in this function
we have an uint16_t array with 8 values and, using a for loop, we will send these
values to the shift registers.

237
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Code 32.4.6 Display another effect
void another_effect()
{
 uint16_t effect[] =
 {
 0b0000001000000001,
 0b0000000100000010,
 0b0000000010000100,
 0b0000000001001000,
 0b0000000000110000,
 0b0000000001001000,
 0b0000000010000100,
 0b0000000100000010,
 0b0000001000000001
 };

 for(int i = 0; i < 9; i++)
 {
 byte high_byte = effect[i] >> 8;
 byte low_byte = effect[i];

 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);

 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, high_byte);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, low_byte);

 //copy the values to the latch register
 digitalWrite(latchPin, 1);

 //wait 500 ms
 delay(500);
 }

 //send a 0 byte value to turn all the LEDs off
 //before any other instruction
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);
}

The last effect created is the one that will turn on the LEDs like a barcode.
This function contains an array with three values and in the for loop, that will repeat
10 times, we will play them one after another.

238
www.plusivo.com Plusivo – ESP8266 Guide

 32. Lesson 27: Multiple Shift Registers

Code 32.4.7 Barcode effect
void barcode()
{
 uint16_t barcode_array[] =
 {
 0b0000001001001001,
 0b0000000100100100,
 0b0000000010010010
 };

 //repeat 10 times
 for(int i = 0; i < 10; i++)
 {
 //set the clock pin LOW before shiftOut() call
 digitalWrite(clockPin, LOW);

 //set latchPin to LOW so the LEDs don't flash while
 //sending in bits
 digitalWrite(latchPin, 0);
 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[0] >> 8);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[0]);
 //copy the values to the latch register
 digitalWrite(latchPin, 1);
 delay(200);

 digitalWrite(latchPin, 0);
 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[1] >> 8);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[1]);
 //copy the values to the latch register
 digitalWrite(latchPin, 1);
 delay(200);

 digitalWrite(latchPin, 0);
 //shift out the high byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[2] >> 8);
 //shift out the low byte
 shiftOut(dataPin, clockPin, MSBFIRST, barcode_array[2]);
 //copy the values to the latch register
 digitalWrite(latchPin, 1);
 delay(200);
 }

 //send a 0 byte value to turn all the LEDs off
 //before any other instruction
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);
}

239
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

33. Lesson 28: 4 Digit 7 Segment Display

33.1 Overview
In this lesson you will learn how to use two shift registers and how to control

a 4 Digit 7 Segment with Common Cathode display.

33.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 2 x 74HC595 Shift Register

• 34 x male-male jumper wires;

• 4 x 150 Ω resistors;

• 4 Digit 7 Segment Common Cathode Display;

33.3 Component Introduction
4 Digit 7 Segment with Common Cathode display

This display is made from 4 digits and has 7 segments, meaning that it is
made up of 7 LEDs to represent a digit from 0 to 9 when the 7 LEDs are turned on in
a specific manner. Also, it has an 8 th LED for the dot (decimal point). This display is
with common cathode, which means that the cathode is common for the 8 LEDs of
each digit. Below you can find two schemes for the display to understand the linking
between LEDs and the 12 pins.

240
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Each digit has 7 LEDs plus 1 LED for the dot, named from A to G, and DP for
the dot. The anode for the four digits is common, and the cathode for all LEDs of each
digit is common, as shown in the scheme above. We have 12 pins, 8 for the letters A –
G and DP (these are anodes connected to digital pins on the development board), and
we have 4 pins (also called the digit pins) for the cathode of each digit (12, 9, 8 and 6).

33.4 Connections
Below, you can find the schematic:

241
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Below, you can find a visual representation of the connections:

33.5 Code
The code for this lesson can be found in the folder "Lesson 28: 4 Digit 7

Segment Display" and is similar with the previous one, because we are using two
shift registers and we have to use the shiftOut() function to send the data to the shift
registers. Because we are working with two shift registers, we need to send a 16 bit
value, or two 8 bits values. So, to make the code easy to understand, we are going to
connect the 8 pins, for the segments and decimal point, to the first shift register and
the 4 pins for the digits to the second shift register.

The A (also B – G and DP) LEDs have common anode for all 4 digits,
meaning that if we connect all 4 digit pins to the ground, and the A pin to 3.3V the A
LEDs will light up on all 4 digits.

The code starts by declaring the pins used by the two shift registers and a
byte variable called digit that will store the current digits active. Next, we have
created some byte variables whose values have set to HIGH only one bit that
corresponds to an output pin of the shift register. For example, we have the a variable
that has the B00000001 value. When we will send this value to the shift register,
using the shiftOut() function with MSBFIRST, only the QA is set to HIGH. To this
output is connected the 11 pin of the 4 Digit 7 Segment Display, and this pin is for
the A LEDs that will light up after sending the a value to the shift register.

242
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Code 33.5.1 Variables declaration

//declare the pins used by the shift registers
const int dataPin = D8;
const int latchPin = D7;
const int clockPin = D6;

//declare a byte variable to store the current digits active
byte digit;

//create byte variables that have only one segment set to HIGH
byte a = B00000001;
byte b = B00000010;
byte c = B00000100;
byte d = B00001000;
byte e = B00010000;
byte f = B00100000;
byte g = B01000000;
byte dot = B10000000;

In the setup() function we need to set the pins used by the shift registers as
OUTPUT.

Code 33.5.2 The setup() function

void setup()
{
 //set the pins used by the shift registers to output
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

A function created for this code is Digit() and contains a switch statement
that will update the value of the digit variable, depending on the value of the x
parameter. You can notice that we give to the digit variable integer values, but you
can find the value written as 8 bits commented next to the integer value.

243
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Code 33.5.3 Select the digit

//this function is used to select the digit to be turned on
void Digit(int x)
{
 //the switch statement is used to select the right digit
 switch(x)
 {
 case 1:
 //prepare to turn on only the first digit
 digit = 14; //B00001110
 //break is used to get out from the switch function
 break;
 case 2:
 //prepare to turn on only the second digit
 digit = 13; //B00001101
 break;
 case 3:
 //prepare to turn on only the third digit
 digit = 11; //B00001011
 break;
 case 4:
 //prepare to turn on only the fourth digit
 digit = 7; //B00000111
 break;
 case 5:
 //turn on all the digits
 digit = 0; //B00000000
 break;
 }
}

Before talking about the loop() function, we have created special functions
for all the digits, from 0 to 9, with suggestive names. In each function we will first set
the latch pin to LOW, then send, using shiftOut(), the value of digit to the second
shift register, which deals with the digits, and to the first shift register an 8 bit value
that will have set to HIGH some LEDs to reproduce on the display a digit from 0 to
9. At the end, the latch pin will be set to HIGH. There are two functions for each
digit, for example we have zero() and zero_no_dot(), with a single difference
between them, namely the bit for the decimal point. In the zero() function the bit for
the decimal point is set to HIGH, while in the zero_no_dot() function, the decimal
point is set to LOW. You can find below two examples of pair functions created for 0
and 1, but in the code located in 4_Digit_Display folder you can find the functions
created for all digits.

244
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Code 33.5.4 Functions for reproducting 0 and 1
void zero()
{
 //display on the selected digits a "0"
 //and the dots are turned on
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 191); //B10111111
 digitalWrite(latchPin, 1);
}

void zero_no_dot()
{
 //display on the selected digits a "0"
 //and the dots are turned off
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 63); //B00111111
 digitalWrite(latchPin, 1);
}

void one()
{
 //display on the selected digits a "1"
 //and the dots are turned on
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 134); //B10000110
 digitalWrite(latchPin, 1);
}

void one_no_dot()
{
 //display on the selected digits a "1"
 //and the dots are turned off
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 6); //B00000110
 digitalWrite(latchPin, 1);
}

In the loop() function we will select all the digits to be turned on and then
send the eight byte variables, created at the beginning of the code, one after another
at a interval of 1000 ms. After this, you will see that every segment and the decimal
point will light up.

245
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

Code 33.5.5 The loop() function
 //call the "Digit" function in order to update
 //the value of the "digit" variable
 Digit(5);
 //send two byte values tothe shift registers
 //after this, all the A LEDs will turn on, because
 //all the digits are turned on (they are set to LOW)
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, a);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the B LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, b);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the C LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, c);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the D LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, d);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the E LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, e);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the F LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, f);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on all the G LEDs
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, g);
 digitalWrite(latchPin, 1);
 delay(1000);

 //turn on the LEDs for the dots
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, dot);
 digitalWrite(latchPin, 1);
 delay(1000);

Further, we will select only the first digit to be turnd on and set the A
segment to HIGH. After this, all the digits will be selected and a 0 will appear on all

246
www.plusivo.com Plusivo – ESP8266 Guide

 33. Lesson 28: 4 Digit 7 Segment Display

of them, with the dot turned off.

Code 33.5.6 The loop() function

 //select the first digit
 Digit(1);
 //turn on the A LED on the selected digit
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, a);
 digitalWrite(latchPin, 1);
 delay(2000);

 //select all the digits
 Digit(5);
 //display on the selected digits a "0"
 //the LEDs for the dots are turned off
 zero_no_dot();
 delay(2000);

In the last part of the loop() function the first digit will be selected and on it
will be displayed a 1, then the second digit will be selected and on it will be displayed
2. Next, on the third digit will be displayed a 3 and on the fourth digit will be
displayed a 4.

Code 33.5.7 The loop() function

 //select the first digit and display on it
 //a "1" for 1 s
 //the LEDs for the dots are turned on
 Digit(1);
 one();
 delay(1000);

 //select the second digit and display on
 //it a "2" for 1 s
 //the LEDs for the dots are turned on
 Digit(2);
 two();
 delay(1000);

 //select the third digit and display on
 //it a "3" for 1 s
 //the LEDs for the dots are turned on
 Digit(3);
 three();
 delay(1000);

 //select the last digit and display on
 //it a "4" for 1 s
 //the LEDs for the dots are turned on
 Digit(4);
 four();
 delay(1000);

247
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

34. Lesson 29: Multiplexing

34.1 Overview
In this lesson you will learn how to use a 4 Digit 7 Segment with Common

Cathode display to create a counter that can display from 0 to 1000 seconds.

34.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 2 x 74HC595 Shift Register

• 34 x male-male jumper wires;

• 4 x 150 Ω resistors;

• 4 Digit 7 Segment Common Cathode Display;

34.3 Connections
Below, you can find the schematic:

248
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

Below, you can find a visual representation of the connections:

249
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

34.4 Code
To display different figures on each digit, for example we want to display

1234, we have to turn on one digit at a time. To do that we need a function to select
the digit and call it 4 times, each time for one digit. Giving the fact that we are
working with 4 digits and we want to display different figures on each one, we have
to place the 4 successive calls in the loop() function and, based on the principle of
Persistence of Vision, we can see four 7 – segment displays, all displaying different
numbers, because the loop() function, where we only have simple functions to call
and delays of the order of microseconds, will run aproximately 1 time every 1
milisecond, since this speed is too fast for us to notice, we will be able to see 4
sepparate figures on each digit (multiplexing).

The code for this lesson can be found in the "Lesson 29: Multiplexing"
folder and is based on the one from the previous lesson and has an additional
function.

At the beginning of the code, besides the variables for the pins used by the
shift registers and the digit variable, we will add a variable that will count how many
times the loop function will run, a boolean variable that will tell us when the third
digit is active and an integer variable with a predetermined value.

Code 34.4.1 Variables declaration

//declare a long variable to count how many times the loop()
//function ran
long n = 0;

//the next boolean variable will tell us when the third digit
//is active, so the dot next to it will turn on
boolean dot;

//fine-tuning value for clock
//at the time of writing the code, with this exact final code,
//this value was right and the loop function was running every 1 ms
//so the value on the third digit will increase every 1 second
//creating a good cronometer, and can count 1000 seconds
const int time_to_wait = 150;

The setup() function has an additional delay of 1000 ms so that the board will
be fully initialised before start counting.

250
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

Code 34.4.2 The setup() function

void setup()
{
 //set the pins used by the shift registers to output
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);

 //wait 1 s before start counting
 delay(1000);
}

In the Digit() function we will add some instructions that will turn off all the
LEDs of the display before any other instruction, and then we will initialise the dot
variable with 0. The value of the dot variable will be modified in the loop() function
before calling the function for displaying a figure on the third digit.

Code 34.4.3 Select the digit
void Digit(int x)
{
 //turn off all the digits and segments
 //because we use a common cathode display, to turn off the digits
 //we have to set them to HIGH
 //15 written as 8 bits is B00001111
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, 15);
 shiftOut(dataPin, clockPin, MSBFIRST, 0);
 digitalWrite(latchPin, 1);

 //reset the dot variable
 dot = 0;

 //the switch statement is used to select the right digit
 switch(x)
 {
 case 1:
 //prepare to turn on only the first digit
 digit = 14; //B00001110
 //break is used to get out from the switch function
 break;
 case 2:
 //prepare to turn on only the second digit
 digit = 13; //B00001101
 break;
 case 3:
 //prepare to turn on only the third digit
 digit = 11; //B00001011
 break;
 default:
 //prepare to turn on only the fourth digit
 digit = 7; //B00000111
 break;
 }
}

The Number() function has an if statement to decide if we are at the third

251
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

digit, then call a function to display a number from 0 to 9, and also the dot will turn
on. If we are at digit 1, 2 or 4, then call a function to display a number from the 0 to 9,
but with the dot turned off. The pair of functions like zero() and zero_no_dot(), or
one() and one_no_dot() and so on, are almost the same, the only difference is that
the first one has also the dot turned on, when the second has the dot turned off.
These functions are defined in the code from the previous lesson, so we will not talk
about them.

252
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

Code 34.4.4 Display a number on the selected digit
void Number(int x)
{
 if (dot == 1)
 {
 switch(x)
 {
 default:
 zero();
 break;
 case 1:
 one();
 break;
 case 2:
 two();
 break;
 case 3:
 three();
 break;
 case 4:
 four();
 break;
 case 5:
 five();
 break;
 case 6:
 six();
 break;
 case 7:
 seven();
 break;
 case 8:
 eight();
 break;
 case 9:
 nine();
 break;
 }
 }
 else
 {
 switch(x)
 {
 default:
 zero_no_dot();
 break;
 case 1:
 one_no_dot();
 break;
 case 2:
 two_no_dot();
 break;
 case 3:
 three_no_dot();
 break;
 case 4:
 four_no_dot();
 break;
 case 5:
 five_no_dot();
 break;
 case 6:
 six_no_dot();
 break;
 case 7:
 seven_no_dot();
 break;
 case 8:
 eight_no_dot();
 break;
 case 9:
 nine_no_dot();
 break;
 }
 }
}

253
www.plusivo.com Plusivo – ESP8266 Guide

 34. Lesson 29: Multiplexing

All the defined functions are combined in the loop() function. Here, we will
select the digit, then display a figure on it. After selecting the third digit, we will
initialise the dot variable with 1, so in the Number() function we will execute the
first block of the if statement. At the end of the loop() function we will increment
the n number. The loop() function will run approximately one time every 1 ms.

Code 34.4.5 The loop() function
void loop()
{
 //select first digit
 Digit(1);
 //display a number from 0 to 9
 //because the loop function has to run 100 times per second,
 //we use n/100 to get a 4 digit number and
 // result/1000%10 for first digit
 // result/100%10 for second digit
 // result/10%10 for third digit
 // result%10 for the fourth digit
 Number((n/100/1000)%10);
 delayMicroseconds(time_to_wait);

 //select second digit
 Digit(2);
 //show a number on the display
 Number((n/100/100)%10);
 delayMicroseconds(time_to_wait);

 //select third digit
 Digit(3);
 //change the dot variable so the following functions know
 //that we are at the third digit and turn on the dot
 dot = 1;
 //show a number on the third digit of the display
 Number((n/100/10)%10);
 delayMicroseconds(time_to_wait);

 //select fourth digit
 Digit(4);
 //show a number on the fourth digit of the display
 Number((n/100)%10);
 delayMicroseconds(time_to_wait);

 //increment the number
 n++;

 //we have a four digit display, multiplied by 100
 //we will obtain a 6 digit number, but the loop function
 //will run over and over again, so we have to reset the counter
 //when on our display the number 9999 will appear
 if(n == 1000000)
 {
 n = 0;
 }
}

254
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

35. Lesson 30: Show Distance on 4 Digit
Display. Timer

35.1 Overview
In this lesson you will learn how to display the distance calculated using the

Ultrasonic sensor on a 4 Digit 7 Segment Display with Common Cathode. Because
we also need to calculate the distance, which takes some time, we will use interrupts
to guarantee the multiplexing effect.

35.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 2 x 74HC595 Shift Register

• 34 x male-male jumper wires;

• 4 x male-female jumper wires;

• 4 x 150 Ω resistors;

• 4 Digit 7 Segment Common Cathode Display;

• Ultrasonic module HC-SR04+;

35.3 Connections
Below, you can find the schematic:

255
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Below, you can find a visual representation of the connections:

256
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

35.4 Code
The code for this lesson can be found in the folder "Lesson 30: Show

Distance on 4 Digit Display. Timer" and starts by declaring the pins used by the
shift registers, the pins for the Ultrasonic module, a byte variable called digit that
stores the current digit active, a byte variable called dot that will modify when we
are at the third digit and will have the LSB set to high, otherwise, it will be 0. Also we
need an array with 4 elements that stores the figure that will be displayed on each
digit and a int variable that will store the number of the current digit.

Code 35.4.1 Variables declaration

//declare the pins used by the shift registers
const int dataPin = D8;
const int latchPin = D7;
const int clockPin = D6;

//declare the pins used by the ultrasonic module
const int echoPin = D2;
const int trigPin = D1;

//declare a byte variable to store the current digit active
byte digit;

//the next byte variable will tell us when the third digit
//is active, so the dot next to it will turn on
byte dot;

//declare an array of 4 int elements in which we will be
//storing the figures that are going to be displayed on each
//digit of the display
int digits[4];

//this variable will tells us which is the current digit
int currentDigit = 0;

In the setup() function we will set the pins used by the shift registers and the
trigger pin as OUTPUT and the echo pin as INPUT. The next part is for the
initialization of the timer. We will use timer because we need to create the
multiplexing effect by turning the power on and off rapidly on the selected digits and
we need to guarantee the timing. We also could have done this by putting our code in
the loop() function, but the problem is that we need to calculate the distance, which
takes some time. Using the timer1_attachInterrupt(timer_function) function we
will add interrupts to the timer_function and using timer1_enable(TIM_DIV16,
0, 0) we will enable the timer with 5 ticks/microsecond. The indicated function will
execute every 4 ms (timer1_write(20000), with 20000 ticks at 5 ticks/microsecond
will result in 4000 microseconds).

257
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Code 35.4.2 The setup() function

void setup()
{
 //set the pins used by the shift registers to output
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);

 //the trigger pin (transmitter) must be set as OUTPUT
 pinMode(trigPin, OUTPUT);

 //the echo pin (receiver) must be set as INPUT
 pinMode(echoPin, INPUT);

 //initialize the timer every 4 ms
 //enable the timer with the divider TIM_DIV16 which
 //has a value of 5 ticks/microsecond
 timer1_attachInterrupt(timer_function);
 timer1_enable(TIM_DIV16, 0, 0);

 //divide the ticks by 5 and that is the value in microseconds
 timer1_write(20000);
}

In the loop() function we will call the function that calculates the distance.

Code 35.4.3 The loop() function

void loop()
{
 //calculate the distance
 calculate_distance();
}

In the calculate_distance() function we will calculate the distance using the
same methods as in the previous lessons, then create a new int variable, dist, in
which will be stored the distance multiplied by 10, so we can get also the first
decimal. Then, using an if statement we will check if the value of dist id greater than
0 (the ultrasonic module calculates distances greater than 2 cm), the extract the
figures and put them in the digits array. At the end, we would want to wait 100 ms
before next reading so we can see the results better on the display.

258
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Code 35.4.4 Calculate the distance and store the figures in the declared array

void calculate_distance()
{
 //set the trigPin to LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 //1 microsecond = 10^(-6) seconds
 delayMicroseconds(2);

 //generate a ultrasound for 10 microseconds then turn off the transmitter
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //reads the echoPin, returns the sound wave travel time in microseconds
 long duration = pulseIn(echoPin, HIGH, 400*2/0.034);

 //using the formula shown in the guide, calculate the distance
 double distance = duration*0.034/2;

 //multiply the distance by 10 to get also the first decimal
 int dist = (int)(distance*10);

 //if the modified distance is greater than 0, then extract the figures
 if(dist > 0)
 {
 digits[3] = dist%10;
 digits[2] = (dist/10)%10;
 digits[1] = (dist/100)%10;
 digits[0] = dist/1000;
 }

 //wait 100 ms before next reading
 delay(100);
}

The main function that will create the multiplexing effect and display on each
digit a number is timer_function() which has attached ICACHE_RAM_ATTR for
moving it to the RAM. In this function we will select a digit, then verify if we are at
the third one so the dot variable will have the bit for the dot set to HIGH. Then,
using the Number(digits[currentDigit]) instruction we will display on the current
digit its corresponding value from the array. The currentDigit will be incremented
and reset to 0 if its value is greater than 3. The last instruction is to call this function
again after 4 ms.

259
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Code 35.4.5 The timer function

void ICACHE_RAM_ATTR timer_function()
{
 //select the digit
 Digit(currentDigit);

 //if we are at the third digit, then modify the bit
 //for the dor from 0 to 1
 if(currentDigit == 2)
 dot = 0b10000000;

 //display the number on the selected digit
 Number(digits[currentDigit]);

 //go to the next digit
 currentDigit++;

 //if we are at the last digit, then go to the first one
 if(currentDigit > 3)
 currentDigit = 0;

 //initialize this function again after 4 ms
 timer1_write(20000);
}

The Digit() function remains unchanged, and in the Number() function we
will have only one switch statement that, depending on the value of the x
paramether, a function will be called and show on the current digit a number.

260
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Code 35.4.6 Call a function to display a figure on the current digit

void Number(int x)
{
 //deppending on the value of x, using the switch statement
 //we are calling a specific function to display on the selected
 //digit a number indicated by the name of the function
 switch(x)
 {
 default:
 zero();
 break;
 case 1:
 one();
 break;
 case 2:
 two();
 break;
 case 3:
 three();
 break;
 case 4:
 four();
 break;
 case 5:
 five();
 break;
 case 6:
 six();
 break;
 case 7:
 seven();
 case 8:
 eight();
 break;
 case 9:
 nine();
 break;
 }
}

The functions from the previous switch statement are a little changed
comparing with the ones from the previous lesson. When we will shift the 8 bits for
the segments and dot, we will use the bitwise OR operator that will modify only the
bit for the dot. Implicitly, this bit is 0 and the dot byte is also 0, so there will be no
changes. But when we will be at the third digit, the value of dot will be 0b10000000,
the result of the operation will change. For example, if we want to display a 0 on the
third digit, we will have to do the next operation:

0b00111111 | 0b10000000 and the result will be 0b10111111

261
www.plusivo.com Plusivo – ESP8266 Guide

 35. Lesson 30: Show Distance on 4 Digit Display. Timer

Code 35.4.7 A part of the functions that will display a number on a digit

void zero()
{
 //display on the selected digit a "0"
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 0b00111111 | dot);
 digitalWrite(latchPin, 1);
}

void one()
{
 //display on the selected digit a "1"
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 0b00000110 | dot);
 digitalWrite(latchPin, 1);
}

void two()
{
 //display on the selected digit a "2"
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 0b01011011 | dot);
 digitalWrite(latchPin, 1);
}

void three()
{
 //display on the selected digit a "3"
 digitalWrite(latchPin, 0);
 shiftOut(dataPin, clockPin, MSBFIRST, digit);
 shiftOut(dataPin, clockPin, MSBFIRST, 0b01001111 | dot);
 digitalWrite(latchPin, 1);
}

262
www.plusivo.com Plusivo – ESP8266 Guide

 36. Lesson 31: Exponential Moving Average

36. Lesson 31: Exponential Moving Average

36.1 Overview
This lesson is similar with the previous lesson as we also display the distance

calculated using the Ultrasonic module, but as an addition we create a smooth
transition between the readings using an Exponential Moving Average.

An exponential moving average (EMA) places a greater weight and
significance on the most recent data points.

36.2 Components required
• Development board;

• Breadboard 830p;

• Micro USB – Type A USB cable;

• 2 x 74HC595 Shift Register

• 34 x male-male jumper wires;

• 4 x male-female jumper wires;

• 4 x 150 Ω resistors;

• 4 Digit 7 Segment Common Cathode Display;

• Ultrasonic module HC-SR04+;

36.3 Connections
Below, you can find the schematic:

263
www.plusivo.com Plusivo – ESP8266 Guide

 36. Lesson 31: Exponential Moving Average

Below, you can find a visual representation of the connections:

264
www.plusivo.com Plusivo – ESP8266 Guide

 36. Lesson 31: Exponential Moving Average

36.4 Code
The code for this lesson is similar with the one included in the previous one

and can be found in the "Lesson 31: Exponential Moving Average" folder. The
only difference is in the calculate_distance() function, where we will use the
formula for Exponential Moving Average, which also uses the previous reading, to
get a smoother transition between the values showed on the display. The formula for
EMA is:

EMA = C*K + P*(1 – K)

Where:

• K = 2.0/(N + 1), with N = length of the EMA

• C = current distance

• EMA = the current EMA value

• P = the previous EMA value

 And the new calculate_distance() function is:

265
www.plusivo.com Plusivo – ESP8266 Guide

 36. Lesson 31: Exponential Moving Average

Code 36.4.1 Calculate the distance

void calculate_distance()
{
 //set the trigPin LOW in order to prepare for the next reading
 digitalWrite(trigPin, LOW);

 //delay for 2 microseconds
 delayMicroseconds(2);

 //generate a ultrasound for 10 microseconds then turn off the transmitter.
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 //Reads the echoPin, returns the sound wave travel time in microseconds
 long duration = pulseIn(echoPin, HIGH, 400*2/0.034);

 //using the formula shown in the guide, calculate the distance
 double distance = duration*0.034/2;

 //calculate the Exponential Moving Average
 double k = 2.0/(10+1);
 ema = distance*k + ema*(1-k);

 //multiply the ema by 10 to get also the first decimal
 int dist = (int)(ema*10);

 //if the modified distance is greater than 0, then extract the figures
 if(dist > 0)
 {
 digits[3] = dist%10;
 digits[2] = (dist/10)%10;
 digits[1] = (dist/100)%10;
 digits[0] = dist/1000;
 }

 //wait 50 ms before next reading
 delay(50);
}

266
www.plusivo.com Plusivo – ESP8266 Guide

 37. Lesson 32: OTA Upload

37. Lesson 32: OTA Upload

37.1 Overview
This lesson is an advanced one as you might run into different problems until

you master how to upload code Over The Air (OTA). It means that you can load a
sketch on your development board without a USB cable. All you need is to be
conected to the same network as the board.

37.2 Components required
• Development board;

• Micro USB – Type A USB cable;

37.3 Code
For this to work, besides the Arduino IDE software, you need to install

Python 2 (python 3 is not supported). Python comes preinstalled on most Linux
distributions.

For windows users:

Download

You can download python by accessing the following link:
https://www.python.org/downloads/windows/.

Then, click on Latest Python 2 Release:

267
www.plusivo.com Plusivo – ESP8266 Guide

https://www.python.org/downloads/windows/

 37. Lesson 32: OTA Upload

And click on Windows x86-64 MSI Installer:

Install
268

www.plusivo.com Plusivo – ESP8266 Guide

 37. Lesson 32: OTA Upload

a) Find the .exe file you just downloaded.

b) Double click on it.

c) Now click on Next.

d) Select location where you want to install python and then click Next.

e) Make sure you select Add python.exe to Path and then Will be installed
269

www.plusivo.com Plusivo – ESP8266 Guide

 37. Lesson 32: OTA Upload

on local hard drive. Then click Next.

f) Now click on Finish.

270
www.plusivo.com Plusivo – ESP8266 Guide

 37. Lesson 32: OTA Upload

Congratulations! Python is now installed. Now let's go to the code.

You can find the code in the folder called "Lesson 32: OTA Upload" ->
"OTA". Also, in the "Lesson 32: OTA Upload" folder you can find some of the
previous lesson updated with OTA, so check them to exercise. You can find in the
comments some details. But let's explain here a part of the code.

First of all, we have to include the library ArduinoOTA.h. This step is very
important, because some of the following instructions in the code will not work
without this library. Next, we have to connect the development board to the wireless
network. You have to modify the credentials of the network. Replace the dots with
the SSID and PASSWORD of your WiFi network.

Code 37.3.1 The library used and the declaration of two variables for wireless

#include <ArduinoOTA.h>

const char* ssid = "..............";
const char* password = "..........";

Next, in the setup() function, set up the serial communication with the
computer and connect to the WiFi. The baud rate is 115200 and the board is
configured as WiFi_STA.

Code 37.3.2 The setup() function

 //start the serial communication with the computer at 115200 bits/s
 Serial.begin(115200);

 //print a message into the Serial Monitor
 Serial.println("Booting");

 //set the WiFi mode to WiFi_STA.
 //the WiFi_STA means that the board will act as a station,
 //similar to a smartphone or laptop
 WiFi.mode(WIFI_STA);

 //connect to the WiFi network using the ssid and password strings
 WiFi.begin(ssid, password);

Now, check if the ESP is connected to the network, otherwise, restart it.
Repeat these steps until the board is finally connected to the network. In case your
board restarts several times, check if the network is up and if you entered correctly
the credentials.

271
www.plusivo.com Plusivo – ESP8266 Guide

 37. Lesson 32: OTA Upload

Code 37.3.3 The setup() function

 //check if the esp is connected to the network
 //otherwise, restart the board until it finally connects
 //to the network
 while (WiFi.waitForConnectResult() != WL_CONNECTED) {
 Serial.println("Connection Failed! Rebooting...");
 delay(5000);
 ESP.restart();
 }

The last instructions you have to write in setup() function is to initialise the
OTA and to display the IP of the board in serial monitor.

Code 37.3.4 The setup() function

 //initialise the OTA
 ArduinoOTA.begin();

 //display the IP of the board in Serial Monitor
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());

Finally, in the loop() function you have to listen if there is any available
request to upload the code over the air.

Code 37.3.5 The loop() function

void loop()
{
 //listen if there is any available request to upload the code OTA
 ArduinoOTA.handle();
}

NOTE! In order to be able to upload over the air, you have to put these
instructions in the code you upload. Otherwise, you will be able to upload only once.

Sometimes, you might get some errors that can be easily solved by cutting
the power of the board for some seconds then powering it up again.

One disadvantage of this method to upload code is that the Serial Monitor is
not available.

The only noticeable difference between upload over the air and over the USB
cable is that instead of selecting a Serial port, you now have to pick a Network
Port. In case you uploaded the code and your board doesn't appear at Network Port,
please restart the Arduino IDE and wait several seconds.

272
www.plusivo.com Plusivo – ESP8266 Guide

273
www.plusivo.com Plusivo – ESP8266 Guide

 38. Lesson 33: Soft Access Point

38. Lesson 33: Soft Access Point

38.1 Overview
In this lesson you will learn how to configure the development board,

ESP8266, to run in soft access point mode so that WiFi enabled stations can connect
to it. Additionally, we will add a web server to work on top of it and print a simple
message in the web browser. In lesson 15 you have learned how to connect the
development board to a WiFi network, but, this time, the development board will act
as an Access Point. The best part is that the board will always have the following IP
address, 192.168.4.1, but the downside is that it won't have access to the internet, so
using a web server, in the HTML page you will not be able to include any library
from a CDN, the libraries shoult be stored locally.

38.2 Components required
• Development board;

• Micro USB – Type A USB cable;

38.3 Code
This lesson will have two codes, a easy one in which you will learn how to

set up the development board to run in the Soft Access Point mode, and in the second
one we will add a web server and print a simple "Hello world!" in the browser. The
setup for the web server is the same from the previous lessons, so you can configure
it and add any web page you want.

First code can be found in the folder called Access_Point, which is inside the
folder called "Lesson 33: Soft Access Point", and additional details can be found in
the code, as comments.

The code is very easy to understand. Firstly, we have to include the
ESP8266WiFi.h library, which will provide all the functionality needed to set the
access point, and we have to define two global variables, ssid and password, which
are the name and password of the network hosted by the development board.

Code 38.3.1 The libray used and the credentials of the hosted network

#include <ESP8266WiFi.h>

//here you have to insert your desired credentials
const char* ssid = "ssid";
const char* password = "password";

The setup() function will start by opening a serial connection, to show some
messages in the Serial Monitor. Now, we have to call the softAP method on the WiFi

274
www.plusivo.com Plusivo – ESP8266 Guide

 38. Lesson 33: Soft Access Point

extern variable, passing as input both the ssid and password variables defined above.

Code 38.3.2 The setup() function

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //display a message in Serial Monitor
 Serial.print("Configuring access point...");

 //set the AP with the ssid and password entered above
 WiFi.softAP(ssid, password);
}

And that's it. Now, the development board will act as an Access Point and
you can connect to it using the credentials defined above (replace them with your
own).

For the second code, which can be found in the AP_webserver folder, which
is inside the folder called "Lesson 33: Soft Access Point" , we will need to add the
web server functionality to the previous code, things defined already in the previous
lessons.

We have to include the ESP8266WebServer.h library, in order to be able to
set up our web server. Next, you have to set up the server side. First, you have to
create a new object ESP8266WebServer. Moreover, you have to specify the port it is
listening to. The default HTTP port is 80 but you can change it however you want.
Make sure it is not used by another service.

Code 38.3.3 The libraries used and the credentials of the hosted wireless network

#include <ESP8266WiFi.h>
#include <ESP8266WebServer.h>

//here you have to insert your desired credentials
const char* ssid = "ssid";
const char* password = "password";

ESP8266WebServer server(80);

Now, as in the Wireless Connectivity lesson, we will add the
setupServer() function and create a handler for the default location (which is "/"). In
the htmlIndex() function we will send a message that will be displayed in the HTML
page.

275
www.plusivo.com Plusivo – ESP8266 Guide

 38. Lesson 33: Soft Access Point

Code 38.3.4 Set up the server and send a message to the client

//setupServer() function is used to set up and organise
//the website
void setupServer()
{
 //the method "server.on()" is to call a function when
 //the user access the location
 //the default location is "/"
 server.on("/", htmlIndex);

 //start the server
 server.begin();
 //print in serial manager that the HTTP server is started
 Serial.println("HTTP server started");
}

//the htmlIndex() is called everytime somebody access the address
//of the board in the browser and sends back a message.
void htmlIndex()
{
 //the mssage variable is used to store the message sent to the
 //user
 String message = "Hello world!";

 //send the message to the user
 server.send(200, "text/html", message);
}

In the setup() function we will start a serial communication with the
computer and put the necessary instructions for the Access Point.

Code 38.3.5 The setup() function

 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s for the Serial communication to start
 delay(1000);

 //display a message in Serial Monitor
 Serial.print("Configuring access point...");

 //set the AP with the ssid and password entered above
 WiFi.softAP(ssid, password);

You can add the following lines in your setup() function to print the IP
adress of the server in the Serial Monitor, but usually the IP adress in the Soft Access
Point mode is 192.168.4.1. At the end of the setup() function we will call the
setupServer() function.

276
www.plusivo.com Plusivo – ESP8266 Guide

 38. Lesson 33: Soft Access Point

Code 38.3.6 The setup() function

 //display the server IP address in Serial Monitor
 IPAddress myIP = WiFi.softAPIP();
 Serial.print("AP IP address: ");
 Serial.println(myIP);

 //call the function used to setup the server
 setupServer();

Finally, in the loop() function we need to put an instruction to listen for
incoming requests.

Code 38.3.7 The loop() function

void loop()
{
 //the method below is used to manage the incoming request
 //from the user
 server.handleClient();
}

277
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

39. Lesson 34: SPIFFS
SPIFFS stands for SPI (Serial Peripheral Interface) Flash Filling System. It is

very useful because it allows you to partition the system flash so it can be used both
for code and support a file system. You can store there web pages, configurations or
data that is not erased when the board is powered off.

39.1 Configure Arduino IDE
For linux users

• In the Lesson 34: SPIFFS -> Spiffs folder, you will find an archive named
“ESP8266FS-0.2.0.zip”. Unzip it.

• Locate the ESP8266FS folder. Copy it using the shortcut CTRL + C or
RIGHT CLICK → COPY.

• Locate the arduino-1.8.5 installation folder. Usually, it can be found in the
Downloads folder, because, in our case, there we extracted the archive when
we installed the Arduino IDE.

• Inside arduino 1.8.5 folder, you should find a folder called tools.

278
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

• Paste the ESP8266FS folder inside the arduino 1.8.5/tools folder.

• Congratulations! You have just configured the Arduino IDE to upload data
in SPIFFS.

279
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

For windows users
• In the Lesson 34: SPIFFS -> Spiffs folder, you will find an archive named

“ESP8266FS”. Unzip it.

• Locate the ESP8266FS folder that is inside ESP8266FS-0.2.0 folder. Copy it
using the shortcut CTRL+C or RIGHT CLICK → COPY.

• Locate the Arduino installation folder. Usually, it can be found it

C:\Program Files (x86).

• Inside Arduino folder, you should find a folder called tools.

• Paste the ESP8266FS folder inside the Arduino/tools folder.

280
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

• Congratulations! You have just configured the Arduino IDE to upload data
in SPIFFS.

281
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

39.2 Check the flash memory
It is possible to upload a code on the development board and find how much

flash memory it has.

You can find it in the folder Lesson 34: SPIFFS -> CheckFlashConfig.
Upload it, open the Serial Monitor and set the baud rate at 115200. You should be
able to see the size of the flash memory in bytes. You should divide that value to
1024*1024 to find the size in megabytes.

For example:

4194304
1024∗1024

=4

which means the board has 4 megabytes of flash memory.

This code is very simple. In the setup() function we only need to start a serial
communication with the computer.

Code 39.2.1 The setup() function

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);
}

282
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

In the loop() function we need to create two 32 bit variables that will store
the real flash size and the size from IDE. After creating them, we need to display the
values in the Serial Monitor and put a delay of 5000 ms before the next reading.

Code 39.2.2 The loop() function (read the real flash size and the IDE size)

void loop()
{
 //read the real size of the chip
 //and also get the size set from Arduino the IDE
 //they should match
 uint32_t real = ESP.getFlashChipRealSize();
 uint32_t ide = ESP.getFlashChipSize();

 //display in Serial Monitor the real size
 Serial.printf("Flash real size: %u\n", real);

 //display in Serial Monitor the size set from Arduino IDE
 Serial.printf("Flash ide size: %u\n\n", ide);

 //wait 5 s
 delay(5000);
}

39.3 Upload data in flash memory
A big advantage of uploading data in the flash memory is that it is

independently of the code uploaded. It means that you can upload code while
keeping the data in flash.

Follow these steps to upload code in the flash:

• Open Lesson 34: SPIFFS -> SPIFFsUsage folder.

• Data that is going to be uploaded on the board MUST be inside a folder
called data. It is recommended to be a text file.

• Open SPIFFsUsage.ino sketch.

• Connect the development board and make sure the settings in Tools tab are
correctly configured and select the right communication port. Then click on
ESP8266 Sketch Data Upload.

IMPORTANT!!! Make sure that the Serial Monitor is closed, otherwise
you won’t be able to upload data.

Note! If you get the error “SPIFFS Upload failed!”, try to reconnect the
board.

Note! It takes more time to upload using SPIFFS, so do not open the
Serial Monitor while it is uploading.

283
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

Upload SPIFFsUsage.ino on the board, then open serial monitor and set the
baud rate at 115200. You should see something like:

Below you can find the code explained.

284
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

39.4 Code
The code can be found in the folder called Lesson 34: SPIFFS ->

SPIFFsUsage, and supplimentary details can be found in the comments.

In order to use SPIFFS, you have to include a library “FS.h” using the
following command:

Code 39.4.1 The SPIFFS library

#include "FS.h"

Next, you have to initialize the SPIFFS and check if it is available, by using
an if statement.

Code 39.4.2 The setup() function

void setup()
{
 //start the Serial communication at 115200 bits/s
 Serial.begin(115200);

 //wait 1 s
 delay(1000);

 //initialise the SPIFFS and display
 //a message in Serial Monitor if it is available or not
 if (SPIFFS.begin())
 {
 Serial.println("SPIFFS Active");
 }
 else
 {
 Serial.println("Unable to activate SPIFFS");
 }

 //wait 2 s
 delay(2000);
}

Check the following table to see different commands for SPIFFS:

285
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

Command Explanation

SPIFFS.exists(“name”); It is used to check if there is a file called name saved
in flash

File f=SPIFFS.open(“name”, "x");

Open a file called name.
X represents the access mode:

• r : read;
• w : write (it erases the content of the file);
• a : append (the same as write but it does not

erase the content of the file);
• r+ : can both read and write, but it doesn’t

create the file if it doesn’t exist;
• w+: can both read and write, but it creates a

file if it doesn’t exist;

f.position(); Returns the position of the pointer in the file

f.size(); Returns the size of the file

s.trim(); Get a version of the String with any leading and
trailing whitespace removed

f.readStringUntil(); Reads characters from the serial buffer into a string

In the loop() function we have an instruction that checks if there is a file
called test.txt, and if that is true, then the main block will run. In that block we have
an instruction that opens the file, and then in the Serial Monitor, and using the
commands from the table above, we will display the content of that file. At the end
we will close the opened file.

286
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

Code 39.4.3 Open the file

 //open the file
 File f = SPIFFS.open("/test.txt", "r");
 if (!f)
 {
 //display a message
 Serial.print("Unable To Open");
 }
 else
 {
 String s;
 Serial.print("Contents of the file: ");
 Serial.print("/test.txt \n\n");

 //f.position() returns the position of the pointer
 //in the file
 //f.size() returns the size of the file
 while (f.position() < f.size())
 {
 //readStringUntil() reads characters from the
 //serial buffer into a string
 s = f.readStringUntil('\n');

 //get a version of the String with any leading
 //and trailing whitespace removed
 s.trim();

 //print the string in Serial Monitor
 Serial.println(s);
 }
 //close the file
 f.close();
 }

Next, we will open the file and add a new line at the end of it. Then, the new
content of the file will be displayed in Serial Monitor.

287
www.plusivo.com Plusivo – ESP8266 Guide

 39. Lesson 34: SPIFFS

Code 39.4.4 Add a new line and display the content in Serial Monitor

 //add new lines in the file
 f = SPIFFS.open("/test.txt", "a");
 if (!f)
 {
 Serial.print("Unable To Open");
 }
 else
 {
 //add new line in the file
 f.println("\n");
 f.println("This is a new line");
 f.close();
 }

 //wait 5 s
 delay(5000);

 //display the modified file in Serial Monitor
 f = SPIFFS.open("/test.txt", "r");
 if (!f)
 {
 Serial.print("Unable To Open");
 }
 else
 {
 String s;
 Serial.print("Contents of the file: ");
 Serial.print("/test.txt \n\n");

 while (f.position() < f.size())
 {
 s = f.readStringUntil('\n');
 s.trim();
 Serial.println(s);
 }
 f.close();
 }

You can find another example with SPIFFS in the folder Lesson 34: SPIFFS
-> Spiffs/HTML_spiffs. In this example we will store the HTML page on the
development board, instead of including the code for the page in the arduino code.
We will connect to a wireless network, create a web server and display a simple web
page in a browser. Do not forget to upload the data before uploading the sketch. And
check if the page is in the data folder. Check the code for more details.

And an advanced example is located in the folder Lesson 34: SPIFFS/Spiffs/
Control_led_web.

288
www.plusivo.com Plusivo – ESP8266 Guide

	1. Introduction
	2. Install and configure Arduino IDE
	2.1 Download and install Arduino IDE
	2.2.1 For Linux users
	2.2.2 For Windows users

	2.2 Add ESP8266 based boards into the Arduino IDE

	3. Add Libraries
	3.1 What are Libraries
	3.2 Installing a library

	4. Lesson 1: Blink an LED
	4.1 Overview
	4.2 Components required
	4.3 Component Introduction
	4.4 Connection
	4.5 Code

	5. Lesson 2: Dim an LED
	5.1 Overview
	5.2 Components required
	5.3 Theory
	5.4 Connection
	5.5 Code

	6. Lesson 3: RGB LED
	6.1 Overview
	6.2 Components required
	6.3 Components introduction
	6.4 Theory
	6.5 Connection
	6.6 Code

	7. Lesson 4: Motor Control
	7.1 Overview
	7.2 Components required
	7.3 Components introduction
	7.4 Connections
	7.5 Code

	8. Lesson 5: Ultrasonic HC-SR04+
	8.1 Overview
	8.2 Components required
	8.3 Components introduction
	8.4 Connections
	8.5 Code

	9. Lesson 6: RGB LED and Ultrasonic
	9.1 Overview
	9.2 Components required
	9.3 Connections
	9.4 Code

	10. Lesson 7: Digital Inputs
	10.1 Overview
	10.2 Components required
	10.3 Components introduction
	10.4 Connections
	10.5 Code

	11. Lesson 8: Control an LED using push buttons
	11.1 Overview
	11.2 Components required
	11.3 Connections
	11.4 Code

	12. Lesson 9: Buzzer
	12.1 Overview
	12.2 Components required
	12.3 Components introduction
	12.4 Connections
	12.5 Code

	13. Lesson 10: Buzzer and Digital Inputs
	13.1 Overview
	13.2 Components required
	13.3 Connections
	13.4 Code

	14. Lesson 11: Buzzer and Ultrasonic
	14.1 Overview
	14.2 Components required
	14.3 Connections
	14.4 Code

	15. Lesson 12: Play songs with a buzzer
	15.1 Overview
	15.2 Components required
	15.3 Connections
	15.4 Code

	16. Theory lesson: Object-Orienteed Programming (OOP)
	17. Lesson 13: DHT11
	17.1 Overview
	17.2 Components required
	17.3 Component Introduction
	17.4 Connections
	17.5 Code

	18. Lesson 14: Potentiometer and Servo Motor
	18.1 Overview
	18.2 Components required
	18.3 Components introduction
	18.4 Connections
	18.5 Code

	19. Lesson 15: Wireless Connectivity
	19.1 Overview
	19.2 Components required
	19.3 HTTP
	19.4 Code

	20. Theory lesson: Web pages
	20.1 HTML
	20.2 JavaScript Object Notation
	20.3 jQuery
	20.4 Bootstrap
	20.5 Font awesome

	21. Lesson 16: Control an LED from web
	21.1 Overview
	21.2 Components required
	21.3 Connections
	21.4 Code

	22. Lesson 17: Dim an LED from web
	22.1 Overview
	22.2 Components required
	22.3 Connections
	22.4 Code

	23. Lesson 18: Dim an RGB LED from web
	23.1 Overview
	23.2 Components required
	23.3 Connections
	23.4 Code

	24. Lesson 19: Control a motor from web
	24.1 Overview
	24.2 Components required
	24.3 Connections
	24.4 Code

	25. Lesson 20: Display the distance in web
	25.1 Overview
	25.2 Components required
	25.3 Connections
	25.4 Code

	26. Lesson 21: Potentiometer, servo, DHT11 and web server
	26.1 Overview
	26.2 Components required
	26.3 Connections
	26.4 Code

	27. Lesson 22: Buzzer from web
	27.1 Overview
	27.2 Components required
	27.3 Connections
	27.4 Code

	28. Lesson 23: Set the frequency of a buzzer from web
	28.1 Overview
	28.2 Components required
	28.3 Connections
	28.4 Code

	29. Lesson 24: Piano
	29.1 Overview
	29.2 Components required
	29.3 Connections
	29.4 Code

	30. Lesson 25: Piano with 7 octaves
	30.1 Overview
	30.2 Components required
	30.3 Connections
	30.4 Code

	31. Lesson 26: Shift Register
	31.1 Overview
	31.2 Components required
	31.3 Component Introduction
	31.4 Connections
	31.5 Code

	32. Lesson 27: Multiple Shift Registers
	32.1 Overview
	32.2 Components required
	32.3 Connections
	32.4 Code

	33. Lesson 28: 4 Digit 7 Segment Display
	33.1 Overview
	33.2 Components required
	33.3 Component Introduction
	33.4 Connections
	33.5 Code

	34. Lesson 29: Multiplexing
	34.1 Overview
	34.2 Components required
	34.3 Connections
	34.4 Code

	35. Lesson 30: Show Distance on 4 Digit Display. Timer
	35.1 Overview
	35.2 Components required
	35.3 Connections
	35.4 Code

	36. Lesson 31: Exponential Moving Average
	36.1 Overview
	36.2 Components required
	36.3 Connections
	36.4 Code

	37. Lesson 32: OTA Upload
	37.1 Overview
	37.2 Components required
	37.3 Code

	38. Lesson 33: Soft Access Point
	38.1 Overview
	38.2 Components required
	38.3 Code

	39. Lesson 34: SPIFFS
	39.1 Configure Arduino IDE
	39.2 Check the flash memory
	39.3 Upload data in flash memory

	39.4 Code

