Aluminium wind direction transmitter (Model 485)

SN-3000-FXA-N01 Ver 2.0

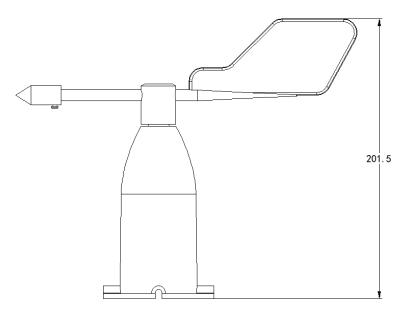
directory

Chapter 1 Product Introduction

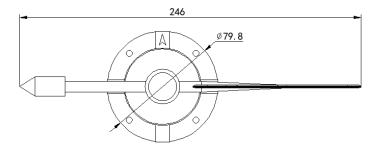
1.1 Product Overview

SN-3000-FXA-N01 Wind Direction Transmitter, the equipment is compact and lightweight, easy to carry and assemble. Through the new design concept, the wind direction information can be effectively obtained, and the shell is made of high-quality aluminum alloy profiles, and the outside is sprayed with plastic technology, which has a good anti-corrosion and anti-erosion effect, and can ensure that the transmitter is rust-free for long-term use. At the same time, the internal smooth bearing system ensures the accuracy of information collection. It is widely used in wind direction measurement in greenhouses, environmental protection, weather stations, ships, docks, aquaculture and other environments.

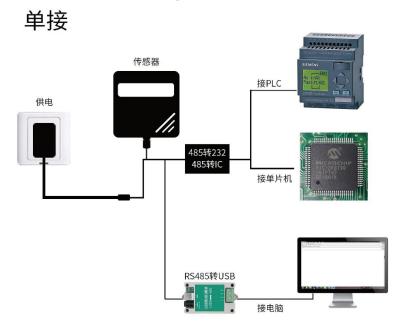
1.2 Functional features


- Anti-electromagnetic interference treatment
- Using high-performance bearings, the rotational resistance is small and the measurement is accurate
- All-aluminum shell, high mechanical strength, high hardness, corrosion resistance, no rust and can be used outdoors for a long time
- The structure and weight of the equipment are carefully designed and distributed, with small moment of inertia and sensitive response
- Standard ModBus-RTU communication protocol, easy access

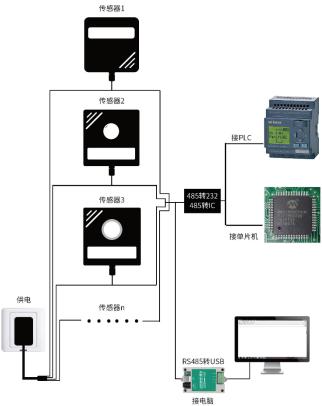
1.3 Main parameters


DC Power Supply (Default)	5~30V DC
Maximum power consumption	0.2W (12V power supply)
The operating temperature of the transmitter circuit	-40°C~+60°C, 0%RH~80%RH
Communication interfaces	485 communication (ModBus) protocol Data bit length: 8 bits Parity mode: None Stop bit length: 1 bit Default ModBus communication address: 1

	Baud rate: 2400, 4800 (default), 9600, 19200, 38400,
	57600, 115200
Measuring range	8 directions, 16 directions, 360°
Dynamic response speed	≪0.5s


Equipment Dimensions:

单位: mm



1.4 System Framework Diagram

This product can also be used in a combination of multiple sensors in a 485 bus, theoretically a bus can be 254 485 sensors, the other end is connected to the PLC with a 485 interface, connected to a single-chip microcomputer through the 485 interface chip, or can be connected to the computer by using USB to 485Use the sensor configuration tool provided by our company for configuration and testing (only one device can be connected when using this configuration software).

1.5 Product selection

SN-					Company code
	3000-				
		FXA-			Aluminum shell wind direction
			N01-		485 (ModBus protocol) output
				empty	8 directions
				16	16 directions
				360	360 degrees

1.6 Product appearance

Chapter 2 Hardware Connections

2.1 Inspection before installation of the equipment

Equipment list:

■1 transmitter

Four mounting screws

Certificate of conformity, warranty card

Install 1 drag blade

2.2 Interface Description

Wide voltage power supply input 10~30V is acceptable. When wiring the 485 signal line, pay attention to the two lines of A and B cannot be reversed, and the addresses of multiple devices on the bus cannot conflict.

	Line color	illustrate
electricity	brown	Power supply (10~30V
source		DC)
	black	Power supply negative
open	Yellow (green) color	485-A
letter	blue	485-B

2.2.1 Sensor wiring

2.3 Installation

Flange installation, threaded flange connection makes the wind direction sensor firmly fixed on the flange, chassis Ø79.8mm, evenly open four Ø6mm mounting holes on the circumference of Ø68mm, and use bolts to tightly fix it on the bracket, so that the whole set of instruments, keep at the best level, ensure the accuracy of wind direction data, flange connection is easy to use, can withstand greater pressure.

2.4 Precautions

1. The user shall not disassemble it by himself, let alone touch the sensor core, so as not to cause damage to the product.

2. Try to stay away from high-power interference equipment, so as not to cause inaccurate measurement, such as inverter, motor, etc., when installing and disassembling the transmitter, the power supply must be disconnected first, and water entering the transmitter can lead to irreversible changes.

3. Prevent chemical reagents, oil, dust, etc. from directly infringing on the sensor, do not use it for a long time in condensation and extreme temperature environment, and strictly prevent cold and heat shock.

Chapter 3 Configuring Software Installation and Use

Our company provides a supporting "485 parameter configuration software", which can easily use the computer to read the parameters of the sensor, and flexibly modify the device ID and address of the sensor.

Note that when using software auto-acquisition, you need to ensure that there is only one sensor on the 485 bus.

3.1 The sensor is connected to the computer

After the sensor is properly connected to the computer via USB to 485 and provided with power, you can see the correct COM port in the computer ("My Computer - Properties - Device Manager - Ports" to see the COM port).

Open the package, select "Debugging Software" --- "485 Parameter Configuration

If you don't see the COM port in Device Manager, it means that you don't have the USB to 485 driver installed (in the package) or you haven't installed the driver correctly, contact a technician for assistance.

3.2 Use of sensor monitoring software

(1) The configuration interface is as shown in the figure, first obtain the serial slogan according to the method in chapter 3.1 and select the correct serial port.

(2) Click on the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 4800bit/s, and the default address is 0x01.

(3) Modify the address and baud rate according to the needs of use, and query the current functional status of the equipment at the same time.

(4) If the test is not successful, please re-check the wiring of the equipment and the installation of the 485 driver.

485变送器配置软件V2	.1		
请选择串口号:	COM4 💌	测试波特率]
设备地址:	1	查询	- 设置
设备波特率:	4800	查询	设置
温度值:		查询	
湿度值:		查询	
水漫状态:		查询	
断电状态:		查询	
光照序测	试结果	**	
co			
運信輸出延用	设备地址:1 波	5特率:4800	设置
遥信常开常闭设置			设置
湿度上的		确定	设置
湿度下			设置
温度上限:		查询	设置
温度下限:		查询	设置
湿度回差:			设置
温度回差:			设置
湿度偏差:			设置
温度偏差:			设置
3	夜晶控制模式:	液晶控制模式设	置
无线温湿度变	送器参数设置:	无线参数设置	

Chapter 4 Communication Protocols

4.1 Basic communication parameters

Encoding	8-bit binary
Data bits	8 bits
Parity bits	not

Stop bits	1 bit
Error checks	CRC (Redundant Cycle Code).
baud rate	1200bit/s, 2400bit/s, 4800bit/s, 9600bit/s, 19200bit/s, 38400bit/s, 5760 0bit/s, 115200bit/sbit/s can be set, and the factory default is 4800bit/
	S

4.2 Data Frame Format Definition

The ModBus-RTU communication protocol is used in the following format:

The initial structure ≥ 4 bytes of time

Address code = 1 byte

Feature code = 1 byte

Data area = N bytes

Error check = 16-digit CRC code

The time at which the end structure ≥ 4 bytes

Address code: The address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: The function indication of the instruction sent by the host computer, this transmitter only uses the function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the 16bits data high byte first!

CRC code: a two-byte check code.

Address c	Feature cod	Register start ad	Register lengt	The check su	The check digit
ode	es	dress	h	m is low	is high
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte

Host query frame structure:

Slave Response Frame Structure:

Address code	Feature codes	Number of valid bytes	Data Zone 1	Second data area	N data area	Checksum
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes

4.3 Register address

The 8-azimuth device registers are as follows:

Register address	PLC or	content	operate
	configuration		

	address		
0000 H	40001	Wind direction (0-7)	read only
		The uploaded data is the	
		real value	
0001 H	40002	Wind direction (0-315°)	read only
0002 H	40003	Wind direction (0-359.9°).	read only

The 16 azimuth type wind direction sensor registers are as follows:

Register	r address	PLC or	content	operate
		configuration		
		address		
000	00 H	40001	Wind direction $(0-359.9^{\circ})$	read only
000	01 H	40002	(0-15 gears)	read only

The 360° wind direction sensor registers are as follows:

Register address	PLC or	content	operate
	configuration		
	address		
0000 H	40001	Angle values that keep one	read only
		decimal place (0-3599)	
		The uploaded data is	
		expanded by 10 times for	
		the angle value that retains	
		one decimal place	
0001 H	40002	Integer Bit Angle Value (0-	read only
		359)	
		The uploaded data is the	
		actual value	

4.4 Corresponding to the conversion relationship

8 Directions:

Collected value (0-7 stops)	Collected value (0-360 $^{\circ}$)	Corresponding direction	
0	0 °	north wind	
1	45°	Northeast winds	

2	90°	East wind	
3	135°	Southeasterly wind	
4	180°	southerly	
5	225°	Southwesterly winds	
6	270°	zephyr	
7	315°	Northwest wind	

16 directions:

io an eccions.			
Collected value (0-15	Collected value (0-360°)	Corresponding direction	
steps)			
0	348.75°11.25°	north wind	
1	11.25°33.75°	North north-northeast	
		wind	
2	33.75°56.25°	Northeast winds	
3	56.25°78.75°	East to east	
4	78.75°101.25°	East wind	
5	101.25123.75°	East-southeast wind	
6	123.75°146.25°	Southeasterly wind	
7	146.25°168.75°	South-southeast wind	
8	168.75°191.25°	southerly	
9	191.25°213.75°	South-southwest wind	
10	213.75°236.25°	Southwesterly winds	
11	236.25°258.75°	West southwest wind	
12	258.75°281.25°	zephyr	
13	281.25°303.75°	West northwest wind	
14	303.75°326.25°	northwest	
15	326.25°348.75°	North northwest wind	

4.5 Examples and Explanations of Communication Protocols

For example, read the 0x01 wind direction of the device address

Query frame:

Address cod e	Feature codes	Start address	The length of the data	The check su m is low	The check dig it is hig h
0x01	0x03	0x00 0x00	0x00 0x02	0xC4	0x0B

-			· · · · · · · · · · · · · · · · · · ·	<i>,</i>		
Address code		Returns the num ber of valid byte	Wind (0-7 gears)	Wind (0-36	The check s um is low	The check di git is h
		S		0°)		igh
0x01	0x03	0x04	0x00 0x02	0x00 0x5A	0xDB	0xC8

Response frame: (e.g. read wind direction (0-7) is 2, $(0-360^{\circ})$ is 90°)

Wind Direction Calculation:

(0-7 gears): 0002H (hexadecimal) = 2=> Wind direction = east wind

 $(0-360^{\circ})$: 005AH (hexadecimal) = 90=> Wind direction = east wind

Chapter 5 Common Problems and Solutions

No output or output errors

Possible causes:

(1) The computer has a COM port, and the selected port is incorrect.

(2) The baud rate is wrong.

(3) The 485 bus is disconnected, or the A and B lines are reversed.

(4) If the number of devices is too large or the wiring is too long, the nearest power supply should be added, 485 booster should be added, and 120Ω terminal resistance should be increased at the same time.

(5) The USB to 485 driver is not installed or damaged.

(6) The equipment is damaged.