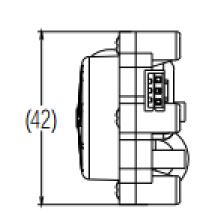
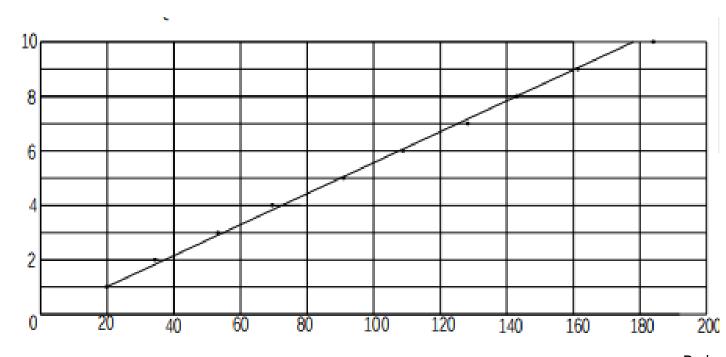

FOSHAN SHUNDE SAIER SENSOR CO., LTD.


SEN-HW83K

Product Data Sheet

I. Specification (mm)

Model:SEN-HW83K
1.Pluse signal output
2. Material: POM
3.Installation: any direction



111. Characteristic for flow range

1. Instant flow Pulse characteristics: $F=(18Q-3)\pm 10\%$ (Just for your reference)

Instantaneous Frequency (Hz) - Flow Rate (L/min) Curve Table

Flow rate L/Min (Q)

L/nin	累积脉冲数/L
0. 5L	1192
1. OL	1247
1.5L	1268

Pulse	(Hz)
-------	------

Flow characteristics laboratory measured parameters comparison table								Puls	e (Hz)				
	L/min			1L	2L	3L	4L	5L	6L	7L	8L	9L	10L
	Pulse			19 69	34 25	53 19	69 44	90.91	108 7	128 2	142 9	161 3	184

II. Technical parameters:

water normal temp. ≤60°C, high temp. ≤115°C											
3V:1.8-5.5V	5V:2. 2-18V	24V:4.5-26.4V									
DC3V, ≤10 µ A	DC5V, ≤10mA	DC5V, ≤10mA									
ge rated voltage < DC5V, high level above: Vcc-0.2V, low level below: 0.2V rated voltage \geq DC5V, high level above: Vcc-0.5V, low level below: 0.5V istor $> 100~M\Omega$ AC500V, $50 Hz$											
						0.3-10L/min					
						≤1.5Mpa					
	$3V:1.8-5.5V$ $DC3V, \leq 10 \mu A$ $rated\ voltage < DC5V,\ higher rated\ voltage \ge DC5V,\ higher rated \ 2000 M\Omega$ $AC500V,\ 50Hz$ $0.3-10L/min$	$3V:1.8-5.5V$ $5V:2.2-18V$ $DC3V$, $\leqslant 10 \mu$ A $DC5V$, $\leqslant 10 mA$ rated voltage $<$ DC5V, high level above: Vcc-0.2V, low level above: Vcc-0.5V, low le									

IV. Instruction:

- 1.In order to avoid particles, debris into the sensor, the sensor inlet must be installed filter.
- 2. Water flow sensor installed in the equipment inside or indoors, do not expose for a long time outdoors or high humidity. Under harsh environment such as temperature, to avoid strong vibration and shake the environment, to avoid affecting the sensor measurement Measuring accuracy.
- 3. When a magnetic material or a material which generates magnetic is close to the sensor, the characteristic may change.
- 4.Do not open the flow sensor to prevent damage, where unauthorized dismantling of the flow sensor are not in the scope of the warranty.
- 5. Not used the structure of the sensor for direct replacement may have discomfort, please prompt;
- 6.Customer service Tel: 0757-22905969; Fax no.0757-22905969.
- https://www.chnsensor.com; E-mail: sale4@chnnsensor.com.

Remark: Applied to water dispenser, water control machine, coffee machine, water purifier, instrument and meter etc.