

## **Physical Properties**

**Thickness** 0.203 mm (0.008 in.) Length 81.3 mm (3.20 in.)\*\* Width 55.9 mm (2.20 in.)

Sensing Area 50.8 mm x 50.8 mm (2 in. x 2 in.)

Connector 2-pin Male Square Pin

Substrate Polyester

Pin Spacing 2.54 mm (0.1 in.)

The A502 sensor is available in a 0-222 N (0-50 lb) range, specified with Tekscan Force Range

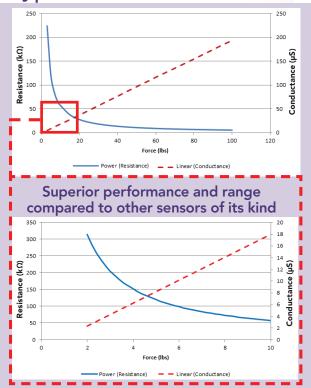
electronics. This model is linear through a much lower range of 0-22 N (0-5 lb),

and is capable of measuring loads up to 44,482 N (10,000 lb).

**ROHS COMPLIANT** 

- Sensor will require an adapter/extender to connect to the ELF System. Contact your Tekscan representative for assistance.
- \*\* Length does not include pins. Please add approximately 6 mm (0.25 in.) for pin length for a total length of approximately 87 mm (3.4 in).




• Thin and flexible

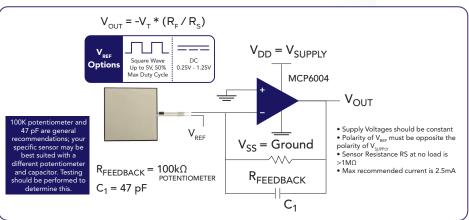
 Ideal for prototyping and integration

• Low-power

• Easy to use

## Typical Performance




| Voltage<br>(V) | Force<br>(lbs) | Resistance<br>(kΩ) | Conductance<br>(µS) |
|----------------|----------------|--------------------|---------------------|
| 0.5            | 20             | 34.36              | 29.11               |
| 0.5            | 40             | 17.14              | 58.33               |
| 0.5            | 60             | 11.57              | 86.41               |
| 0.5            | 80             | 8.71               | 114.76              |
| 0.5            | 100            | 6.97               | 143.54              |

- Sensor resistance measured 20 seconds after applied load
- Sensor loaded through a polycarbonate puck equal to 68% (2.72 in²) of total active area
- Sensor was not attached to any drive circuitry

In order to measure higher forces, apply a lower drive voltage (-0.5 V, -0.25 V, etc.) and reduce the resistance of the feedback resistor (1k $\Omega$  min.) To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

Sensor output is a function of many variables, including interface materials. Therefore, Tekscan recommends the user calibrate each sensor for the application.

## **Recommended Circuit**



|                       | Typical Performance             | Evaluation Conditions                         |  |
|-----------------------|---------------------------------|-----------------------------------------------|--|
| Linearity (Error)     | < ±3% of full scale             | Line drawn from 0 to 50% load                 |  |
| Repeatability         | < ±2.5%                         | Conditioned sensor, 80% of full force applied |  |
| Hysteresis            | < 4.5% of full scale            | Conditioned sensor, 80% of full force applied |  |
| Drift                 | < 5% per logarithmic time scale | Constant load of 111 N (25 lb)                |  |
| Response Time         | < 5µsec                         | Impact load, output recorded on oscilloscope  |  |
| Operating Temperature | -40°C - 60°C (-40°F - 140°F)    | Convection and conduction heat sources        |  |

Force reading change per degree of temperature change = 0.36%/°C (±0.2%/°F)



PURCHASE TODAY ONLINE AT WWW.TEKSCAN.COM/STORE



©Tekscan Inc., 2018. All rights reserved. Tekscan, the Tekscan logo, and FlexiForce are trademarks or registered trademarks of Tekscan, Inc